You can declare the schema with unique names before creation of df. On 27 Jun 2015 13:01, "Axel Dahl" <a...@whisperstream.com> wrote:
> > I have the following code: > > from pyspark import SQLContext > > d1 = [{'name':'bob', 'country': 'usa', 'age': 1}, {'name':'alice', > 'country': 'jpn', 'age': 2}, {'name':'carol', 'country': 'ire', 'age': 3}] > d2 = [{'name':'bob', 'country': 'usa', 'colour':'red'}, {'name':'alice', > 'country': 'ire', 'colour':'green'}] > > r1 = sc.parallelize(d1) > r2 = sc.parallelize(d2) > > sqlContext = SQLContext(sc) > df1 = sqlContext.createDataFrame(d1) > df2 = sqlContext.createDataFrame(d2) > df1.join(df2, df1.name == df2.name and df1.country == df2.country, > 'left_outer').collect() > > > When I run it I get the following, (notice in the first row, all join keys > are take from the right-side and so are blanked out): > > [Row(age=2, country=None, name=None, colour=None, country=None, name=None), > Row(age=1, country=u'usa', name=u'bob', colour=u'red', country=u'usa', > name=u'bob'), > Row(age=3, country=u'ire', name=u'alice', colour=u'green', country=u'ire', > name=u'alice')] > > I would expect to get (though ideally without duplicate columns): > [Row(age=2, country=u'ire', name=u'Alice', colour=None, country=None, > name=None), > Row(age=1, country=u'usa', name=u'bob', colour=u'red', country=u'usa', > name=u'bob'), > Row(age=3, country=u'ire', name=u'alice', colour=u'green', country=u'ire', > name=u'alice')] > > The workaround for now is this rather clunky piece of code: > df2 = sqlContext.createDataFrame(d2).withColumnRenamed('name', > 'name2').withColumnRenamed('country', 'country2') > df1.join(df2, df1.name == df2.name2 and df1.country == df2.country2, > 'left_outer').collect() > > So to me it looks like a bug, but am I doing something wrong? > > Thanks, > > -Axel > > > > >