Hi all

I have to say that this solution surprise me. For the fist time I have such
a requirement but I would expect another more elegant solution.

I'm sure that many persons are doing the some as I'm and they would love to
have a better solution to such a problem.

Best Regards
Marcos

On Fri, Jun 5, 2015 at 1:16 PM, ayan guha <guha.a...@gmail.com> wrote:

> Another option is merge partfiles after your app ends.
> On 5 Jun 2015 20:37, "Akhil Das" <ak...@sigmoidanalytics.com> wrote:
>
>> you can simply do rdd.repartition(1).saveAsTextFile(...), it might not be
>> efficient if your output data is huge since one task will be doing the
>> whole writing.
>>
>> Thanks
>> Best Regards
>>
>> On Fri, Jun 5, 2015 at 3:46 PM, marcos rebelo <ole...@gmail.com> wrote:
>>
>>> Hi all
>>>
>>> I'm running spark in a single local machine, no hadoop, just reading and
>>> writing in local disk.
>>>
>>> I need to have a single file as output of my calculation.
>>>
>>> if I do "rdd.saveAsTextFile(...)" all runs ok but I get allot of files.
>>> Since I need a single file I was considering to do something like:
>>>
>>>       Try {new FileWriter(outputPath)} match {
>>>         case Success(writer) =>
>>>           try {
>>>             rdd.toLocalIterator.foreach({line =>
>>>               val str = line.toString
>>>               writer.write(str)
>>>             }
>>>           }
>>>         }
>>>         ...
>>>       }
>>>
>>>
>>> I get:
>>>
>>> [error] o.a.s.e.Executor - Exception in task 0.0 in stage 41.0 (TID 32)
>>> java.lang.OutOfMemoryError: Java heap space
>>>     at java.util.Arrays.copyOf(Arrays.java:3236) ~[na:1.8.0_45]
>>>     at
>>> java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
>>> ~[na:1.8.0_45]
>>>     at
>>> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>>> ~[na:1.8.0_45]
>>>     at
>>> java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
>>> ~[na:1.8.0_45]
>>>     at
>>> java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
>>> ~[na:1.8.0_45]
>>> [error] o.a.s.u.SparkUncaughtExceptionHandler - Uncaught exception in
>>> thread Thread[Executor task launch worker-1,5,main]
>>> java.lang.OutOfMemoryError: Java heap space
>>>     at java.util.Arrays.copyOf(Arrays.java:3236) ~[na:1.8.0_45]
>>>     at
>>> java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
>>> ~[na:1.8.0_45]
>>>     at
>>> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>>> ~[na:1.8.0_45]
>>>     at
>>> java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
>>> ~[na:1.8.0_45]
>>>     at
>>> java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
>>> ~[na:1.8.0_45]
>>> [error] o.a.s.s.TaskSetManager - Task 0 in stage 41.0 failed 1 times;
>>> aborting job
>>> [warn] application - Can't write to /tmp/err1433498283479.csv: {}
>>> org.apache.spark.SparkException: Job aborted due to stage failure: Task
>>> 0 in stage 41.0 failed 1 times, most recent failure: Lost task 0.0 in stage
>>> 41.0 (TID 32, localhost): java.lang.OutOfMemoryError: Java heap space
>>>     at java.util.Arrays.copyOf(Arrays.java:3236)
>>>     at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
>>>     at
>>> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>>>     at
>>> java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
>>>     at
>>> java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
>>>     at
>>> java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786)
>>>     at
>>> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189)
>>>     at
>>> java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
>>>     at
>>> org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:44)
>>>     at
>>> org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:80)
>>>     at
>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>>     at
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>     at
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>     at java.lang.Thread.run(Thread.java:745)
>>>
>>> Driver stacktrace:
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1204)
>>> ~[spark-core_2.10-1.3.1.jar:1.3.1]
>>>     at
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1193)
>>> ~[spark-core_2.10-1.3.1.jar:1.3.1]
>>>     at
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1192)
>>> ~[spark-core_2.10-1.3.1.jar:1.3.1]
>>>     at
>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>> ~[scala-library-2.10.5.jar:na]
>>>     at
>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>> ~[scala-library-2.10.5.jar:na]
>>>
>>>
>>> if this rdd.toLocalIterator.foreach(...) doesn't work, what is the
>>> better solution?
>>>
>>> Best Regards
>>> Marcos
>>>
>>>
>>>
>>

Reply via email to