The Spark documentation shows the following example code: // Discretize data in 16 equal bins since ChiSqSelector requires categorical features val discretizedData = data.map { lp => LabeledPoint(lp.label, Vectors.dense(lp.features.toArray.map { x => x / 16 } ) ) }
I'm sort of missing why "x / 16" is considered a discretization approach here. [https://spark.apache.org/docs/latest/mllib-feature-extraction.html#feature-selection] -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Discretization-tp22811.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org