Hey there,

1.) I'm loading 2 avro files with that have slightly different schema

df1 = sqlc.load(file1, "com.databricks.spark.avro")
df2 = sqlc.load(file2, "com.databricks.spark.avro")

2.) I want to unionAll them

nfd = dfs1.unionAll(dfs2)

3.) Getting the following error

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-190-a86d9adbea83> in <module>()
     17 
     18 
---> 19 nfd = dfs1.unionAll(dfs2)
     20 
     21 

/home/hadoop/spark/python/pyspark/sql/dataframe.pyc in unionAll(self, other)
    669         This is equivalent to `UNION ALL` in SQL.
    670         """
--> 671         return DataFrame(self._jdf.unionAll(other._jdf),
self.sql_ctx)
    672 
    673     def intersect(self, other):

/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in
__call__(self, *args)
    536         answer = self.gateway_client.send_command(command)
    537         return_value = get_return_value(answer, self.gateway_client,
--> 538                 self.target_id, self.name)
    539 
    540         for temp_arg in temp_args:

/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in
get_return_value(answer, gateway_client, target_id, name)
    298                 raise Py4JJavaError(
    299                     'An error occurred while calling {0}{1}{2}.\n'.
--> 300                     format(target_id, '.', name), value)
    301             else:
    302                 raise Py4JError(

Py4JJavaError: An error occurred while calling o76196.unionAll.
: org.apache.spark.sql.AnalysisException: unresolved operator 'Union ;
        at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.failAnalysis(CheckAnalysis.scala:37)
        at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3.apply(CheckAnalysis.scala:97)
        at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3.apply(CheckAnalysis.scala:43)
        at
org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:88)
        at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.apply(CheckAnalysis.scala:43)
        at
org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:1069)
        at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133)
        at
org.apache.spark.sql.DataFrame.logicalPlanToDataFrame(DataFrame.scala:157)
        at org.apache.spark.sql.DataFrame.unionAll(DataFrame.scala:641)
        at sun.reflect.GeneratedMethodAccessor36.invoke(Unknown Source)
        at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
        at py4j.Gateway.invoke(Gateway.java:259)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:207)
        at java.lang.Thread.run(Thread.java:745)
---------------------------------------------------------------------------

4.) Is it possible to automatically merge 2 DFs with different schemas like
that? Am I doing sth. wrong?

Much appreciated!




--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/Two-DataFrames-with-different-schema-unionAll-issue-tp22765.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to