Hey there, 1.) I'm loading 2 avro files with that have slightly different schema
df1 = sqlc.load(file1, "com.databricks.spark.avro") df2 = sqlc.load(file2, "com.databricks.spark.avro") 2.) I want to unionAll them nfd = dfs1.unionAll(dfs2) 3.) Getting the following error --------------------------------------------------------------------------- Py4JJavaError Traceback (most recent call last) <ipython-input-190-a86d9adbea83> in <module>() 17 18 ---> 19 nfd = dfs1.unionAll(dfs2) 20 21 /home/hadoop/spark/python/pyspark/sql/dataframe.pyc in unionAll(self, other) 669 This is equivalent to `UNION ALL` in SQL. 670 """ --> 671 return DataFrame(self._jdf.unionAll(other._jdf), self.sql_ctx) 672 673 def intersect(self, other): /home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in __call__(self, *args) 536 answer = self.gateway_client.send_command(command) 537 return_value = get_return_value(answer, self.gateway_client, --> 538 self.target_id, self.name) 539 540 for temp_arg in temp_args: /home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name) 298 raise Py4JJavaError( 299 'An error occurred while calling {0}{1}{2}.\n'. --> 300 format(target_id, '.', name), value) 301 else: 302 raise Py4JError( Py4JJavaError: An error occurred while calling o76196.unionAll. : org.apache.spark.sql.AnalysisException: unresolved operator 'Union ; at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.failAnalysis(CheckAnalysis.scala:37) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3.apply(CheckAnalysis.scala:97) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3.apply(CheckAnalysis.scala:43) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:88) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.apply(CheckAnalysis.scala:43) at org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:1069) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133) at org.apache.spark.sql.DataFrame.logicalPlanToDataFrame(DataFrame.scala:157) at org.apache.spark.sql.DataFrame.unionAll(DataFrame.scala:641) at sun.reflect.GeneratedMethodAccessor36.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379) at py4j.Gateway.invoke(Gateway.java:259) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:207) at java.lang.Thread.run(Thread.java:745) --------------------------------------------------------------------------- 4.) Is it possible to automatically merge 2 DFs with different schemas like that? Am I doing sth. wrong? Much appreciated! -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Two-DataFrames-with-different-schema-unionAll-issue-tp22765.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org