My bad. This was an outofmemory disguised as something else. Regards Sab
On Sun, Mar 22, 2015 at 1:53 AM, Sabarish Sasidharan < sabarish.sasidha...@manthan.com> wrote: > I am consistently running into this ArrayIndexOutOfBoundsException issue > when using trainImplicit. I have tried changing the partitions and > switching to JavaSerializer. But they don't seem to help. I see that this > is the same as https://issues.apache.org/jira/browse/SPARK-3080. My > lambda is 0.01, rank is 5, iterations is 10 and alpha is 0.01. I am using > 41 executors, each with 8GB on a 48 million dataset. > > 15/03/21 13:07:29 ERROR executor.Executor: Exception in task 12.0 in stage > 2808.0 (TID 40575) > java.lang.ArrayIndexOutOfBoundsException: 692 > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateBlock$1.apply$mcVI$sp(ALS.scala:548) > at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141) > at org.apache.spark.mllib.recommendation.ALS.org > $apache$spark$mllib$recommendation$ALS$$updateBlock(ALS.scala:542) > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateFeatures$2.apply(ALS.scala:510) > at > org.apache.spark.mllib.recommendation.ALS$$anonfun$org$apache$spark$mllib$recommendation$ALS$$updateFeatures$2.apply(ALS.scala:509) > at > org.apache.spark.rdd.MappedValuesRDD$$anonfun$compute$1.apply(MappedValuesRDD.scala:31) > at > org.apache.spark.rdd.MappedValuesRDD$$anonfun$compute$1.apply(MappedValuesRDD.scala:31) > > How can I get around this issue? > > ​Regards > Sab > > -- > > Architect - Big Data > Ph: +91 99805 99458 > > Manthan Systems | *Company of the year - Analytics (2014 Frost and > Sullivan India ICT)* > +++ > -- Architect - Big Data Ph: +91 99805 99458 Manthan Systems | *Company of the year - Analytics (2014 Frost and Sullivan India ICT)* +++