The temp table in metastore can not be shared cross SQLContext instances, since 
HiveContext is a sub class of SQLContext (inherits all of its functionality), 
why not using a single HiveContext globally? Is there any specific requirement 
in your case that you need multiple SQLContext/HiveContext?

From: shahab [mailto:shahab.mok...@gmail.com]
Sent: Tuesday, March 3, 2015 9:46 PM
To: Cheng, Hao
Cc: user@spark.apache.org
Subject: Re: Supporting Hive features in Spark SQL Thrift JDBC server

You are right ,  CassandraAwareSQLContext is subclass of SQL context.

But I did another experiment, I queried Cassandra using 
CassandraAwareSQLContext, then I registered the "rdd" as a temp table , next I 
tried to query it using HiveContext, but it seems that hive context can not see 
the registered table suing SQL context. Is this a normal case?

best,
/Shahab


On Tue, Mar 3, 2015 at 1:35 PM, Cheng, Hao 
<hao.ch...@intel.com<mailto:hao.ch...@intel.com>> wrote:
Hive UDF are only applicable for HiveContext and its subclass instance, is the 
CassandraAwareSQLContext a direct sub class of HiveContext or SQLContext?

From: shahab [mailto:shahab.mok...@gmail.com<mailto:shahab.mok...@gmail.com>]
Sent: Tuesday, March 3, 2015 5:10 PM
To: Cheng, Hao
Cc: user@spark.apache.org<mailto:user@spark.apache.org>
Subject: Re: Supporting Hive features in Spark SQL Thrift JDBC server

  val sc: SparkContext = new SparkContext(conf)
  val sqlCassContext = new CassandraAwareSQLContext(sc)  // I used some 
Calliope Cassandra Spark connector
val rdd : SchemaRDD  = sqlCassContext.sql("select * from db.profile " )
rdd.cache
rdd.registerTempTable("profile")
 rdd.first  //enforce caching
     val q = "select  from_unixtime(floor(createdAt/1000)) from profile where 
sampling_bucket=0 "
     val rdd2 = rdd.sqlContext.sql(q )
     println ("Result: " + rdd2.first)

And I get the following  errors:
xception in thread "main" 
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Unresolved 
attributes: 'from_unixtime('floor(('createdAt / 1000))) AS c0#7, tree:
Project ['from_unixtime('floor(('createdAt / 1000))) AS c0#7]
 Filter (sampling_bucket#10 = 0)
  Subquery profile
   Project 
[company#8,bucket#9,sampling_bucket#10,profileid#11,createdat#12L,modifiedat#13L,version#14]
    CassandraRelation localhost, 9042, 9160, normaldb_sampling, profile, 
org.apache.spark.sql.CassandraAwareSQLContext@778b692d<mailto:org.apache.spark.sql.CassandraAwareSQLContext@778b692d>,
 None, None, false, Some(Configuration: core-default.xml, core-site.xml, 
mapred-default.xml, mapred-site.xml)

at 
org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$$anonfun$apply$1.applyOrElse(Analyzer.scala:72)
at 
org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$$anonfun$apply$1.applyOrElse(Analyzer.scala:70)
at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:165)
at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:183)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at 
scala.collection.TraversableOnce$class.to<http://class.to>(TraversableOnce.scala:273)
at 
scala.collection.AbstractIterator.to<http://scala.collection.AbstractIterator.to>(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:212)
at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:168)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:156)
at 
org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$.apply(Analyzer.scala:70)
at 
org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$.apply(Analyzer.scala:68)
at 
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
at 
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
at 
scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51)
at 
scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60)
at scala.collection.mutable.WrappedArray.foldLeft(WrappedArray.scala:34)
at 
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
at 
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
at 
org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:402)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:402)
at 
org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:403)
at 
org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:403)
at 
org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:407)
at 
org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:405)
at 
org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:411)
at 
org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:411)
at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:438)
at org.apache.spark.sql.SchemaRDD.take(SchemaRDD.scala:440)
at org.apache.spark.sql.SchemaRDD.take(SchemaRDD.scala:103)
at org.apache.spark.rdd.RDD.first(RDD.scala:1091)
at boot.SQLDemo$.main(SQLDemo.scala:65)  //my code
at boot.SQLDemo.main(SQLDemo.scala)  //my code

On Tue, Mar 3, 2015 at 8:57 AM, Cheng, Hao 
<hao.ch...@intel.com<mailto:hao.ch...@intel.com>> wrote:
Can you provide the detailed failure call stack?

From: shahab [mailto:shahab.mok...@gmail.com<mailto:shahab.mok...@gmail.com>]
Sent: Tuesday, March 3, 2015 3:52 PM
To: user@spark.apache.org<mailto:user@spark.apache.org>
Subject: Supporting Hive features in Spark SQL Thrift JDBC server

Hi,

According to Spark SQL documentation, "....Spark SQL supports the vast majority 
of Hive features, such as  User Defined Functions( UDF) ", and one of these 
UFDs is "current_date()" function, which should be supported.

However, i get error when I am using this UDF in my SQL query. There are couple 
of other UDFs which cause similar error.

Am I missing something in my JDBC server ?

/Shahab


Reply via email to