I have three tables with the following schema: case class* date_d*(WID: Int, CALENDAR_DATE: java.sql.Timestamp, DATE_STRING: String, DAY_OF_WEEK: String, DAY_OF_MONTH: Int, DAY_OF_YEAR: Int, END_OF_MONTH_FLAG: String, YEARWEEK: Int, CALENDAR_MONTH: String, MONTH_NUM: Int, YEARMONTH: Int, QUARTER: Int, YEAR: Int)
case class* interval_f*(ORG_ID: Int, CHANNEL_WID: Int, SDP_WID: Int, MEAS_WID: Int, DATE_WID: Int, TIME_WID: Int, VALIDATION_STATUS_CD: Int, VAL_FAIL_CD:Int, INTERVAL_FLAG_CD: Int, CHANGE_METHOD_WID:Int, SOURCE_LAST_UPD_TIME: java.sql.Timestamp, INTERVAL_END_TIME: java.sql.Timestamp, LOCKED: String, EXT_VERSION_TIME: java.sql.Timestamp, INTERVAL_VALUE: Double, INSERT_TIME: java.sql.Timestamp, LAST_UPD_TIME: java.sql.Timestamp) class *sdp_d*( WID :Option[Int], BATCH_ID :Option[Int], SRC_ID :Option[String], ORG_ID :Option[Int], CLASS_WID :Option[Int], DESC_TEXT :Option[String], PREMISE_WID :Option[Int], FEED_LOC :Option[String], GPS_LAT :Option[Double], GPS_LONG :Option[Double], PULSE_OUTPUT_BLOCK :Option[String], UDC_ID :Option[String], UNIVERSAL_ID :Option[String], IS_VIRTUAL_FLG :Option[String], SEAL_INFO :Option[String], ACCESS_INFO :Option[String], ALT_ACCESS_INFO :Option[String], LOC_INFO :Option[String], ALT_LOC_INFO :Option[String], TYPE :Option[String], SUB_TYPE :Option[String], TIMEZONE_ID :Option[Int], GIS_ID :Option[String], BILLED_UPTO_TIME :Option[java.sql.Timestamp], POWER_STATUS :Option[String], LOAD_STATUS :Option[String], BILLING_HOLD_STATUS :Option[String], INSERT_TIME :Option[java.sql.Timestamp], LAST_UPD_TIME :Option[java.sql.Timestamp]) extends Product{ @throws(classOf[IndexOutOfBoundsException]) override def productElement(n: Int) = n match { case 0 => WID; case 1 => BATCH_ID; case 2 => SRC_ID; case 3 => ORG_ID; case 4 => CLASS_WID; case 5 => DESC_TEXT; case 6 => PREMISE_WID; case 7 => FEED_LOC; case 8 => GPS_LAT; case 9 => GPS_LONG; case 10 => PULSE_OUTPUT_BLOCK; case 11 => UDC_ID; case 12 => UNIVERSAL_ID; case 13 => IS_VIRTUAL_FLG; case 14 => SEAL_INFO; case 15 => ACCESS_INFO; case 16 => ALT_ACCESS_INFO; case 17 => LOC_INFO; case 18 => ALT_LOC_INFO; case 19 => TYPE; case 20 => SUB_TYPE; case 21 => TIMEZONE_ID; case 22 => GIS_ID; case 23 => BILLED_UPTO_TIME; case 24 => POWER_STATUS; case 25 => LOAD_STATUS; case 26 => BILLING_HOLD_STATUS; case 27 => INSERT_TIME; case 28 => LAST_UPD_TIME; case _ => throw new IndexOutOfBoundsException(n.toString()) } override def productArity: Int = 29; override def canEqual(that: Any): Boolean = that.isInstanceOf[sdp_d] } Non-join queries work fine: *val q1 = sqlContext.sql("""SELECT YEAR, DAY_OF_YEAR, MAX(WID), MIN(WID), COUNT(*) FROM date_d GROUP BY YEAR, DAY_OF_YEAR ORDER BY YEAR, DAY_OF_YEAR""")* res4: Array[org.apache.spark.sql.Row] = Array([2014,305,20141101,20141101,1], [2014,306,20141102,20141102,1], [2014,307,20141103,20141103,1], [2014,308,20141104,20141104,1], [2014,309,20141105,20141105,1], [2014,310,20141106,20141106,1], [2014,311,20141107,20141107,1], [2014,312,20141108,20141108,1], [2014,313,20141109,20141109,1], [2014,314,20141110,20141110,1], [2014,315,20141111,20141111,1], [2014,316,20141112,20141112,1], [2014,317,20141113,20141113,1], [2014,318,20141114,20141114,1], [2014,319,20141115,20141115,1], [2014,320,20141116,20141116,1], [2014,321,20141117,20141117,1], [2014,322,20141118,20141118,1], [2014,323,20141119,20141119,1], [2014,324,20141120,20141120,1], [2014,325,20141121,20141121,1], [2014,326,20141122,20141122,1], [2014,327,20141123,20141123,1], [2014,328,20141... But the join queries throw this error:* java.lang.ArrayIndexOutOfBoundsException* *scala> val q = sqlContext.sql("""select * from date_d dd join interval_f intf on intf.DATE_WID = dd.WID Where intf.DATE_WID >= 20141101 AND intf.DATE_WID <= 20141110""")* q: org.apache.spark.sql.SchemaRDD = SchemaRDD[38] at RDD at SchemaRDD.scala:103 == Query Plan == == Physical Plan == Project [WID#0,CALENDAR_DATE#1,DATE_STRING#2,DAY_OF_WEEK#3,DAY_OF_MONTH#4,DAY_OF_YEAR#5,END_OF_MONTH_FLAG#6,YEARWEEK#7,CALENDAR_MONTH#8,MONTH_NUM#9,YEARMONTH#10,QUARTER#11,YEAR#12,ORG_ID#13,CHANNEL_WID#14,SDP_WID#15,MEAS_WID#16,DATE_WID#17,TIME_WID#18,VALIDATION_STATUS_CD#19,VAL_FAIL_CD#20,INTERVAL_FLAG_CD#21,CHANGE_METHOD_WID#22,SOURCE_LAST_UPD_TIME#23,INTERVAL_END_TIME#24,LOCKED#25,EXT_VERSION_TIME#26,INTERVAL_VALUE#27,INSERT_TIME#28,LAST_UPD_TIME#29] ShuffledHashJoin [WID#0], [DATE_WID#17], BuildRight Exchange (HashPartitioning [WID#0], 200) InMemoryColumnarTableScan [WID#0,CALENDAR_DATE#1,DATE_STRING#2,DAY_OF_WEEK#3,DAY_OF_MONTH#4,DAY_OF_YEAR#5,END_OF_MONTH_FLA... *scala> q.take(5).foreach(println)* 15/02/27 15:50:26 INFO SparkContext: Starting job: runJob at basicOperators.scala:136 15/02/27 15:50:26 INFO DAGScheduler: Registering RDD 46 (mapPartitions at Exchange.scala:48) 15/02/27 15:50:26 INFO FileInputFormat: Total input paths to process : 1 15/02/27 15:50:26 INFO DAGScheduler: Registering RDD 42 (mapPartitions at Exchange.scala:48) 15/02/27 15:50:26 INFO DAGScheduler: Got job 2 (runJob at basicOperators.scala:136) with 1 output partitions (allowLocal=false) 15/02/27 15:50:26 INFO DAGScheduler: Final stage: Stage 5(runJob at basicOperators.scala:136) 15/02/27 15:50:26 INFO DAGScheduler: Parents of final stage: List(Stage 6, Stage 7) 15/02/27 15:50:26 INFO DAGScheduler: Missing parents: List(Stage 6, Stage 7) 15/02/27 15:50:26 INFO DAGScheduler: Submitting Stage 6 (MapPartitionsRDD[46] at mapPartitions at Exchange.scala:48), which has no missing parents 15/02/27 15:50:26 INFO MemoryStore: ensureFreeSpace(48744) called with curMem=1042656, maxMem=278302556 15/02/27 15:50:26 INFO MemoryStore: Block broadcast_7 stored as values in memory (estimated size 47.6 KB, free 264.4 MB) 15/02/27 15:50:26 INFO DAGScheduler: Submitting 2 missing tasks from Stage 6 (MapPartitionsRDD[46] at mapPartitions at Exchange.scala:48) 15/02/27 15:50:26 INFO TaskSchedulerImpl: Adding task set 6.0 with 2 tasks 15/02/27 15:50:26 INFO TaskSetManager: Starting task 0.0 in stage 6.0 (TID 594, localhost, ANY, 1197 bytes) 15/02/27 15:50:26 INFO TaskSetManager: Starting task 1.0 in stage 6.0 (TID 595, localhost, ANY, 1197 bytes) 15/02/27 15:50:26 INFO Executor: Running task 0.0 in stage 6.0 (TID 594) 15/02/27 15:50:26 INFO Executor: Running task 1.0 in stage 6.0 (TID 595) 15/02/27 15:50:26 INFO DAGScheduler: Submitting Stage 7 (MapPartitionsRDD[42] at mapPartitions at Exchange.scala:48), which has no missing parents 15/02/27 15:50:26 INFO MemoryStore: ensureFreeSpace(50184) called with curMem=1091400, maxMem=278302556 15/02/27 15:50:26 INFO MemoryStore: Block broadcast_8 stored as values in memory (estimated size 49.0 KB, free 264.3 MB) 15/02/27 15:50:26 INFO DAGScheduler: Submitting 2 missing tasks from Stage 7 (MapPartitionsRDD[42] at mapPartitions at Exchange.scala:48) 15/02/27 15:50:26 INFO TaskSchedulerImpl: Adding task set 7.0 with 2 tasks 15/02/27 15:50:26 INFO TaskSetManager: Starting task 0.0 in stage 7.0 (TID 596, localhost, ANY, 1201 bytes) 15/02/27 15:50:26 INFO TaskSetManager: Starting task 1.0 in stage 7.0 (TID 597, localhost, ANY, 1201 bytes) 15/02/27 15:50:26 INFO Executor: Running task 0.0 in stage 7.0 (TID 596) 15/02/27 15:50:26 INFO Executor: Running task 1.0 in stage 7.0 (TID 597) 15/02/27 15:50:26 INFO BlockManager: Found block rdd_19_0 locally 15/02/27 15:50:26 INFO BlockManager: Found block rdd_19_1 locally 15/02/27 15:50:26 INFO CacheManager: Partition rdd_21_0 not found, computing it 15/02/27 15:50:26 INFO CacheManager: Partition rdd_21_1 not found, computing it 15/02/27 15:50:26 INFO HadoopRDD: Input split: hdfs://CDH-Master-1.cdhcluster/user/spark/Interval_f.csv:0+279831 15/02/27 15:50:26 INFO HadoopRDD: Input split: hdfs://CDH-Master-1.cdhcluster/user/spark/Interval_f.csv:279831+279831 15/02/27 15:50:26 INFO Executor: Finished task 1.0 in stage 6.0 (TID 595). 2134 bytes result sent to driver 15/02/27 15:50:26 INFO Executor: Finished task 0.0 in stage 6.0 (TID 594). 2134 bytes result sent to driver 15/02/27 15:50:26 INFO TaskSetManager: Finished task 1.0 in stage 6.0 (TID 595) in 66 ms on localhost (1/2) 15/02/27 15:50:26 INFO TaskSetManager: Finished task 0.0 in stage 6.0 (TID 594) in 68 ms on localhost (2/2) 15/02/27 15:50:26 INFO TaskSchedulerImpl: Removed TaskSet 6.0, whose tasks have all completed, from pool 15/02/27 15:50:26 INFO DAGScheduler: Stage 6 (mapPartitions at Exchange.scala:48) finished in 0.068 s 15/02/27 15:50:26 INFO DAGScheduler: looking for newly runnable stages 15/02/27 15:50:26 INFO DAGScheduler: running: Set(Stage 7) 15/02/27 15:50:26 INFO DAGScheduler: waiting: Set(Stage 5) 15/02/27 15:50:26 INFO DAGScheduler: failed: Set() 15/02/27 15:50:26 INFO DAGScheduler: Missing parents for Stage 5: List(Stage 7) 15/02/27 15:50:26 INFO BlockManager: Removing broadcast 7 15/02/27 15:50:26 INFO BlockManager: Removing block broadcast_7 15/02/27 15:50:26 INFO MemoryStore: Block broadcast_7 of size 48744 dropped from memory (free 277209716) 15/02/27 15:50:26 INFO ContextCleaner: Cleaned broadcast 7 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [ORG_ID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@409ea4d1, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [CHANNEL_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6f56b67b, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [SDP_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@25e67e58, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [MEAS_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@3f70d6d8, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [DATE_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@9291f72, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [TIME_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6acf7a10, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [VALIDATION_STATUS_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@5b56e738, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [VAL_FAIL_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@26663c61, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [INTERVAL_FLAG_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@20617f9, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [CHANGE_METHOD_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@5e0fdd78, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [SOURCE_LAST_UPD_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@63952186, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [INTERVAL_END_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@53cc177d, ratio: 1.0 15/02/27 15:50:26 INFO StringColumnBuilder: Compressor for [LOCKED]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7c1a3a85, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [EXT_VERSION_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@1df8316a, ratio: 1.0 15/02/27 15:50:26 INFO DoubleColumnBuilder: Compressor for [INTERVAL_VALUE]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@11743585, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [INSERT_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6465b7b6, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [LAST_UPD_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@52004138, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [ORG_ID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6bcc5ad1, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [CHANNEL_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@355e86a1, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [SDP_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@50d8cf66, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [MEAS_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@4a185b01, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [DATE_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@4fec4a8, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [TIME_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7220f427, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [VALIDATION_STATUS_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@517d66fa, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [VAL_FAIL_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7ff3d0e1, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [INTERVAL_FLAG_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6016a567, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [CHANGE_METHOD_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6ec53e79, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [SOURCE_LAST_UPD_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@5788b2bf, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [INTERVAL_END_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@4f8f467e, ratio: 1.0 15/02/27 15:50:26 INFO StringColumnBuilder: Compressor for [LOCKED]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@475d2300, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [EXT_VERSION_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@33a4f99a, ratio: 1.0 15/02/27 15:50:26 INFO DoubleColumnBuilder: Compressor for [INTERVAL_VALUE]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@13ff07f3, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [INSERT_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@72a6e257, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [LAST_UPD_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@2a55f88f, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [ORG_ID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@5541f4b4, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [CHANNEL_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@5d288126, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [SDP_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@e371592, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [MEAS_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@42692b88, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [DATE_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6a90fc8, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [TIME_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@454b16e2, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [VALIDATION_STATUS_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@44cb72f8, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [VAL_FAIL_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@8e91b11, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [INTERVAL_FLAG_CD]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7feffda8, ratio: 1.0 15/02/27 15:50:26 INFO IntColumnBuilder: Compressor for [CHANGE_METHOD_WID]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@64f66236, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [SOURCE_LAST_UPD_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6ba9fb02, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [INTERVAL_END_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@649e7786, ratio: 1.0 15/02/27 15:50:26 INFO StringColumnBuilder: Compressor for [LOCKED]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@5fb93205, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [EXT_VERSION_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7783175b, ratio: 1.0 15/02/27 15:50:26 INFO DoubleColumnBuilder: Compressor for [INTERVAL_VALUE]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@3f7294a9, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [INSERT_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7b7e03c9, ratio: 1.0 15/02/27 15:50:26 INFO TimestampColumnBuilder: Compressor for [LAST_UPD_TIME]: org.apache.spark.sql.columnar.compression.PassThrough$Encoder@e2ac076, ratio: 1.0 15/02/27 15:50:26 INFO MemoryStore: ensureFreeSpace(180264) called with curMem=1092840, maxMem=278302556 15/02/27 15:50:26 INFO MemoryStore: Block rdd_21_0 stored as values in memory (estimated size 176.0 KB, free 264.2 MB) 15/02/27 15:50:26 INFO BlockManagerInfo: Added rdd_21_0 in memory on CDH-Master-1.cdhcluster:45530 (size: 176.0 KB, free: 265.2 MB) 15/02/27 15:50:26 INFO BlockManagerMaster: Updated info of block rdd_21_0 15/02/27 15:50:26 ERROR Executor: Exception in task 1.0 in stage 7.0 (TID 597) *java.lang.ArrayIndexOutOfBoundsException: 10* at $line17.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30) at $line17.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$1.next(Iterator.scala:853) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:62) at org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:50) at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:236) at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163) at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70) at org.apache.spark.rdd.RDD.iterator(RDD.scala:227) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) at org.apache.spark.rdd.RDD.iterator(RDD.scala:229) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:54) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:180) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) 15/02/27 15:50:26 WARN TaskSetManager: Lost task 1.0 in stage 7.0 (TID 597, localhost): java.lang.ArrayIndexOutOfBoundsException: 10 $line17.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30) $line17.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30) scala.collection.Iterator$$anon$11.next(Iterator.scala:328) scala.collection.Iterator$$anon$1.next(Iterator.scala:853) scala.collection.Iterator$$anon$11.next(Iterator.scala:328) org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:62) org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:50) org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:236) org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163) org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70) org.apache.spark.rdd.RDD.iterator(RDD.scala:227) org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) org.apache.spark.scheduler.Task.run(Task.scala:54) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:180) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:745) 15/02/27 15:50:26 ERROR TaskSetManager: Task 1 in stage 7.0 failed 1 times; aborting job 15/02/27 15:50:26 INFO TaskSchedulerImpl: Cancelling stage 7 15/02/27 15:50:26 INFO Executor: Executor is trying to kill task 0.0 in stage 7.0 (TID 596) 15/02/27 15:50:26 INFO TaskSchedulerImpl: Stage 7 was cancelled 15/02/27 15:50:26 INFO DAGScheduler: Failed to run runJob at basicOperators.scala:136 15/02/27 15:50:26 INFO Executor: Executor killed task 0.0 in stage 7.0 (TID 596) 15/02/27 15:50:26 WARN TaskSetManager: Lost task 0.0 in stage 7.0 (TID 596, localhost): TaskKilled (killed intentionally) 15/02/27 15:50:26 INFO TaskSchedulerImpl: Removed TaskSet 7.0, whose tasks have all completed, from pool org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 7.0 failed 1 times, most recent failure: Lost task 1.0 in stage 7.0 (TID 597, localhost): java.lang.ArrayIndexOutOfBoundsException: 10 $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30) $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30) scala.collection.Iterator$$anon$11.next(Iterator.scala:328) scala.collection.Iterator$$anon$1.next(Iterator.scala:853) scala.collection.Iterator$$anon$11.next(Iterator.scala:328) org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:62) org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:50) org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:236) org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163) org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70) org.apache.spark.rdd.RDD.iterator(RDD.scala:227) org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) org.apache.spark.scheduler.Task.run(Task.scala:54) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:180) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) *I am unable to comprehend the error log on my own. Please help.*