You could have a hdfs configuration files in the classpath of the program. HDFS libraries that Spark uses automatically picks those up and starts using them.
TD On Mon, Feb 23, 2015 at 7:47 PM, bit1...@163.com <bit1...@163.com> wrote: > I am crazy for frequent mail rejection so I create a new thread > SMTP error, DOT: 552 spam score (5.7) exceeded threshold > (FREEMAIL_ENVFROM_END_DIGIT,FREEMAIL_REPLY,HTML_FONT_FACE_BAD,HTML_MESSAGE,RCVD_IN_BL_SPAMCOP_NET,SPF_PASS > > > Hi Silvio and Ted > I know there is a configuration parameter to control to write log to HDFS, > but I didn't enable it. > From the stack trace, looks like accessing HDFS is triggered in my code, > but I didn't use HDFS, following is my code: > > object MyKafkaWordCount { > def main(args: Array[String]) { > println("Start to run MyKafkaWordCount") > val conf = new > SparkConf().setAppName("MyKafkaWordCount").setMaster("local[20]") > val ssc = new StreamingContext(conf, Seconds(3)) > val topicMap = Map("topic-p6-r2"->1) > val zkQuorum = "localhost:2181"; > val group = "topic-p6-r2-consumer-group" > > //Kakfa has 6 partitions, here create 6 Receiver > val streams = (1 to 6).map ( _ => > KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) > ) > //repartition to 18, 3 times of the receiver > val partitions = ssc.union(streams).repartition(18).map("DataReceived: " + > _) > > partitions.print() > ssc.start() > ssc.awaitTermination() > } > } > > ------------------------------ > bit1...@163.com >