1. The RSME varies a little bit between the versions. 2. Partitioned the training,validation,test set like so: - training = ratings_rdd_01.filter(lambda x: (x[3] % 10) < 6) - validation = ratings_rdd_01.filter(lambda x: (x[3] % 10) >= 6 and (x[3] % 10) < 8) - test = ratings_rdd_01.filter(lambda x: (x[3] % 10) >= 8) - Validation MSE : - - # 1.3.0 Mean Squared Error = 0.871456869392 - # 1.2.1 Mean Squared Error = 0.877305629074 3. Itertools results: - 1.3.0 - RSME = 1.354839 (rank = 8 and lambda = 1.0, and numIter = 20) - 1.1.1 - RSME = 1.335831 (rank = 8 and lambda = 1.0, and numIter = 10)
Cheers <k/> On Mon, Feb 23, 2015 at 12:37 PM, Xiangrui Meng <men...@gmail.com> wrote: > Which Spark version did you use? Btw, there are three datasets from > MovieLens. The tutorial used the medium one (1 million). -Xiangrui > > On Mon, Feb 23, 2015 at 8:36 AM, poiuytrez <guilla...@databerries.com> > wrote: > > What do you mean? > > > > > > > > -- > > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/Movie-Recommendation-tutorial-tp21769p21771.html > > Sent from the Apache Spark User List mailing list archive at Nabble.com. > > > > --------------------------------------------------------------------- > > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > > For additional commands, e-mail: user-h...@spark.apache.org > > > > --------------------------------------------------------------------- > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > For additional commands, e-mail: user-h...@spark.apache.org > >