Those settings aren't relevant, I think. You're concerned with what
your app requests, and what Spark requests of YARN on your behalf. (Of
course, you can't request more than what your cluster allows for a
YARN container for example, but that doesn't seem to be what is
happening here.)

You do not want to omit --executor-memory if you need large executor
memory heaps, since then you just request the default and that is
evidently not enough memory for your app.

Look at http://spark.apache.org/docs/latest/running-on-yarn.html and
spark.yarn.executor.memoryOverhead  By default it's 7% of your 20G or
about 1.4G. You might set this higher to 2G to give more overhead.

See the --config property=value syntax documented in
http://spark.apache.org/docs/latest/submitting-applications.html

On Thu, Jan 15, 2015 at 3:47 AM, Nitin kak <[email protected]> wrote:
> Thanks Sean.
>
> I guess Cloudera Manager has parameters executor_total_max_heapsize and
> worker_max_heapsize which point to the parameters you mentioned above.
>
> How much should that cushon between the jvm heap size and yarn memory limit
> be?
>
> I tried setting jvm memory to 20g and yarn to 24g, but it gave the same
> error as above.
>
> Then, I removed the "--executor-memory" clause
>
> spark-submit --class ConnectedComponentsTest --master yarn-cluster
> --num-executors 7 --executor-cores 1
> target/scala-2.10/connectedcomponentstest_2.10-1.0.jar
>
> That is not giving GC, Out of memory exception
>
> 15/01/14 21:20:33 WARN channel.DefaultChannelPipeline: An exception was
> thrown by a user handler while handling an exception event ([id: 0x362d65d4,
> /10.1.1.33:35463 => /10.1.1.73:43389] EXCEPTION: java.lang.OutOfMemoryError:
> GC overhead limit exceeded)
> java.lang.OutOfMemoryError: GC overhead limit exceeded
>       at java.lang.Object.clone(Native Method)
>       at akka.util.CompactByteString$.apply(ByteString.scala:410)
>       at akka.util.ByteString$.apply(ByteString.scala:22)
>       at
> akka.remote.transport.netty.TcpHandlers$class.onMessage(TcpSupport.scala:45)
>       at
> akka.remote.transport.netty.TcpServerHandler.onMessage(TcpSupport.scala:57)
>       at
> akka.remote.transport.netty.NettyServerHelpers$class.messageReceived(NettyHelpers.scala:43)
>       at
> akka.remote.transport.netty.ServerHandler.messageReceived(NettyTransport.scala:179)
>       at 
> org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
>       at
> org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
>       at
> org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
>       at
> org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
>       at 
> org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
>       at 
> org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
>       at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
>       at
> org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:109)
>       at
> org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:312)
>       at
> org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:90)
>       at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
>       at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> 15/01/14 21:20:33 ERROR util.Utils: Uncaught exception in thread
> SparkListenerBus
> java.lang.OutOfMemoryError: GC overhead limit exceeded
>       at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168)
>       at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45)
>       at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>       at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>       at scala.collection.immutable.List.foreach(List.scala:318)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>       at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68)
>       at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61)
>       at
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
>       at
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
>       at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79)
>       at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61)
>       at
> org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127)
>       at
> org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59)
>       at
> org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92)
>       at
> org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81)
>       at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at
> org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81)
>       at
> org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50)
>       at
> org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
>       at scala.Option.foreach(Option.scala:236)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
> Exception in thread "SparkListenerBus" java.lang.OutOfMemoryError: GC
> overhead limit exceeded
>       at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168)
>       at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45)
>       at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>       at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>       at scala.collection.immutable.List.foreach(List.scala:318)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>       at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68)
>       at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61)
>       at
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
>       at
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
>       at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79)
>       at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61)
>       at
> org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127)
>       at
> org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59)
>       at
> org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92)
>       at
> org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83)
>       at
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81)
>       at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at
> org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81)
>       at
> org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50)
>       at
> org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
>       at scala.Option.foreach(Option.scala:236)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
>       at
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
>
>
> On Wed, Jan 14, 2015 at 4:44 PM, Sean Owen <[email protected]> wrote:
>>
>> That's not quite what that error means. Spark is not out of memory. It
>> means that Spark is using more memory than it asked YARN for. That in
>> turn is because the default amount of cushion established between the
>> YARN allowed container size and the JVM heap size is too small. See
>> spark.yarn.executor.memoryOverhead in
>> http://spark.apache.org/docs/latest/running-on-yarn.html
>>
>> On Wed, Jan 14, 2015 at 9:18 PM, nitinkak001 <[email protected]>
>> wrote:
>> > I am trying to run connected components algorithm in Spark. The graph
>> > has
>> > roughly 28M edges and 3.2M vertices. Here is the code I am using
>> >
>> >  /val inputFile =
>> > "/user/hive/warehouse/spark_poc.db/window_compare_output_text/000000_0"
>> >     val conf = new SparkConf().setAppName("ConnectedComponentsTest")
>> >     val sc = new SparkContext(conf)
>> >     val graph = GraphLoader.edgeListFile(sc, inputFile, true, 7,
>> > StorageLevel.MEMORY_AND_DISK, StorageLevel.MEMORY_AND_DISK);
>> >     graph.cache();
>> >     val cc = graph.connectedComponents();
>> >     graph.edges.saveAsTextFile("/user/kakn/output");/
>> >
>> > and here is the command:
>> >
>> > /spark-submit --class ConnectedComponentsTest --master yarn-cluster
>> > --num-executors 7 --driver-memory 6g --executor-memory 8g
>> > --executor-cores 1
>> > target/scala-2.10/connectedcomponentstest_2.10-1.0.jar/
>> >
>> > It runs for about an hour and then fails with below error. *Isnt Spark
>> > supposed to spill on disk if the RDDs dont fit into the memory?*
>> >
>> > Application application_1418082773407_8587 failed 2 times due to AM
>> > Container for appattempt_1418082773407_8587_000002 exited with exitCode:
>> > -104 due to: Container
>> > [pid=19790,containerID=container_1418082773407_8587_02_000001] is
>> > running
>> > beyond physical memory limits. Current usage: 6.5 GB of 6.5 GB physical
>> > memory used; 8.9 GB of 13.6 GB virtual memory used. Killing container.
>> > Dump of the process-tree for container_1418082773407_8587_02_000001 :
>> > |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS)
>> > SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
>> > |- 19790 19788 19790 19790 (bash) 0 0 110809088 336 /bin/bash -c
>> > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m
>> >
>> > -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp
>> > '-Dspark.executor.memory=8g' '-Dspark.eventLog.enabled=true'
>> > '-Dspark.yarn.secondary.jars='
>> > '-Dspark.app.name=ConnectedComponentsTest'
>> >
>> > '-Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory'
>> > '-Dspark.master=yarn-cluster'
>> > org.apache.spark.deploy.yarn.ApplicationMaster
>> > --class 'ConnectedComponentsTest' --jar
>> >
>> > 'file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar'
>> > --executor-memory 8192 --executor-cores 1 --num-executors 7 1>
>> >
>> > /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stdout
>> > 2>
>> >
>> > /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stderr
>> > |- 19794 19790 19790 19790 (java) 205066 9152 9477726208 1707599
>> > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m
>> >
>> > -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp
>> > -Dspark.executor.memory=8g -Dspark.eventLog.enabled=true
>> > -Dspark.yarn.secondary.jars= -Dspark.app.name=ConnectedComponentsTest
>> >
>> > -Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory
>> > -Dspark.master=yarn-cluster
>> > org.apache.spark.deploy.yarn.ApplicationMaster
>> > --class ConnectedComponentsTest --jar
>> >
>> > file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar
>> > --executor-memory 8192 --executor-cores 1 --num-executors 7
>> > Container killed on request. Exit code is 143
>> > Container exited with a non-zero exit code 143
>> > .Failing this attempt.. Failing the application.
>> >
>> >
>> >
>> > --
>> > View this message in context:
>> > http://apache-spark-user-list.1001560.n3.nabble.com/Running-beyond-memory-limits-in-ConnectedComponents-tp21139.html
>> > Sent from the Apache Spark User List mailing list archive at Nabble.com.
>> >
>> > ---------------------------------------------------------------------
>> > To unsubscribe, e-mail: [email protected]
>> > For additional commands, e-mail: [email protected]
>> >
>
>

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to