Thanks Akhil for your input. I have already tried with 3 executors and it still results into the same problem. So as Sean mentioned, the problem does not seem to be related to that.
On Sat, Nov 22, 2014 at 11:00 AM, Sean Owen <so...@cloudera.com> wrote: > That doesn't seem to be the problem though. It processes but then stops. > Presumably there are many executors. > On Nov 22, 2014 9:40 AM, "Akhil Das" <ak...@sigmoidanalytics.com> wrote: > >> For Spark streaming, you must always set *--executor-cores* to a value >> which is >= 2. Or else it will not do any processing. >> >> Thanks >> Best Regards >> >> On Sat, Nov 22, 2014 at 8:39 AM, pankaj channe <pankajc...@gmail.com> >> wrote: >> >>> I have seen similar posts on this issue but could not find solution. >>> Apologies if this has been discussed here before. >>> >>> I am running a spark streaming job with yarn on a 5 node cluster. I am >>> using following command to submit my streaming job. >>> >>> spark-submit --class class_name --master yarn-cluster --num-executors 1 >>> --driver-memory 1g --executor-memory 1g --executor-cores 1 my_app.jar >>> >>> >>> After running for some time, the job stops. The application log shows >>> following two errors: >>> >>> 14/11/21 22:05:04 WARN yarn.ApplicationMaster: Unable to retrieve >>> SparkContext in spite of waiting for 100000, maxNumTries = 10 >>> Exception in thread "main" java.lang.NullPointerException >>> at >>> org.apache.spark.deploy.yarn.ApplicationMaster.waitForSparkContextInitialized(ApplicationMaster.scala:218) >>> at >>> org.apache.spark.deploy.yarn.ApplicationMaster.run(ApplicationMaster.scala:107) >>> at >>> org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$main$1.apply$mcV$sp(ApplicationMaster.scala:410) >>> at >>> org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:53) >>> at >>> org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:52) >>> at java.security.AccessController.doPrivileged(Native Method) >>> at javax.security.auth.Subject.doAs(Subject.java:415) >>> at >>> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1594) >>> at >>> org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:52) >>> at >>> org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:409) >>> at >>> org.apache.spark.deploy.yarn.ApplicationMaster.main(ApplicationMaster.scala) >>> >>> >>> and later... >>> >>> Failed to list files for dir: >>> /data2/hadoop/yarn/local/usercache/user_name/appcache/application_1416332002106_0009/spark-local-20141121220325-b529/20 >>> at org.apache.spark.util.Utils$.listFilesSafely(Utils.scala:673) >>> at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:685) >>> at >>> org.apache.spark.util.Utils$$anonfun$deleteRecursively$1.apply(Utils.scala:686) >>> at >>> org.apache.spark.util.Utils$$anonfun$deleteRecursively$1.apply(Utils.scala:685) >>> at >>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) >>> at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) >>> at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:685) >>> at >>> org.apache.spark.storage.DiskBlockManager$$anonfun$stop$1.apply(DiskBlockManager.scala:181) >>> at >>> org.apache.spark.storage.DiskBlockManager$$anonfun$stop$1.apply(DiskBlockManager.scala:178) >>> at >>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) >>> at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) >>> at >>> org.apache.spark.storage.DiskBlockManager.stop(DiskBlockManager.scala:178) >>> at >>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply$mcV$sp(DiskBlockManager.scala:171) >>> at >>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply(DiskBlockManager.scala:169) >>> at >>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply(DiskBlockManager.scala:169) >>> at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311) >>> at >>> org.apache.spark.storage.DiskBlockManager$$anon$1.run(DiskBlockManager.scala:169) >>> >>> >>> Note: I am building my jar on my local with spark dependency added in >>> pom.xml and running it on cluster running spark. >>> >>> >>> -Pankaj >>> >> >>