Which version are you running on again? On Thu, Nov 20, 2014 at 8:17 AM, Sadhan Sood <sadhan.s...@gmail.com> wrote:
> Also attaching the parquet file if anyone wants to take a further look. > > On Thu, Nov 20, 2014 at 8:54 AM, Sadhan Sood <sadhan.s...@gmail.com> > wrote: > >> So, I am seeing this issue with spark sql throwing an exception when >> trying to read selective columns from a thrift parquet file and also when >> caching them: >> On some further digging, I was able to narrow it down to at-least one >> particular column type: map<string, set<string>> to be causing this issue. >> To reproduce this I created a test thrift file with a very basic schema and >> stored some sample data in a parquet file: >> >> Test.thrift >> =========== >> typedef binary SomeId >> >> enum SomeExclusionCause { >> WHITELIST = 1, >> HAS_PURCHASE = 2, >> } >> >> struct SampleThriftObject { >> 10: string col_a; >> 20: string col_b; >> 30: string col_c; >> 40: optional map<SomeExclusionCause, set<SomeId>> col_d; >> } >> ============= >> >> And loading the data in spark through schemaRDD: >> >> import org.apache.spark.sql.SchemaRDD >> val sqlContext = new org.apache.spark.sql.SQLContext(sc); >> val parquetFile = "/path/to/generated/parquet/file" >> val parquetFileRDD = sqlContext.parquetFile(parquetFile) >> parquetFileRDD.printSchema >> root >> |-- col_a: string (nullable = true) >> |-- col_b: string (nullable = true) >> |-- col_c: string (nullable = true) >> |-- col_d: map (nullable = true) >> | |-- key: string >> | |-- value: array (valueContainsNull = true) >> | | |-- element: string (containsNull = false) >> >> parquetFileRDD.registerTempTable("test") >> sqlContext.cacheTable("test") >> sqlContext.sql("select col_a from test").collect() <-- see the exception >> stack here >> >> org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 >> in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage >> 0.0 (TID 0, localhost): parquet.io.ParquetDecodingException: Can not read >> value at 0 in block -1 in file file:/tmp/xyz/part-r-00000.parquet >> at >> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213) >> at >> parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204) >> at >> org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:145) >> at >> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >> at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388) >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) >> at >> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >> at >> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >> at >> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) >> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) >> at scala.collection.AbstractIterator.to(Iterator.scala:1157) >> at >> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) >> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) >> at >> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) >> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) >> at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780) >> at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780) >> at >> org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223) >> at >> org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223) >> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) >> at org.apache.spark.scheduler.Task.run(Task.scala:56) >> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195) >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> >> Caused by: java.lang.ArrayIndexOutOfBoundsException: -1 >> at java.util.ArrayList.elementData(ArrayList.java:418) >> at java.util.ArrayList.get(ArrayList.java:431) >> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) >> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) >> at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80) >> at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74) >> at >> parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282) >> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131) >> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96) >> at >> parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136) >> at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96) >> at >> parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126) >> at >> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193) >> ... 27 more >> >> If you take out the col_d from the thrift file, the problem goes away. >> The problem also shows up when trying to read the particular column without >> caching the table first. The same file can be dumped/read using >> parquet-tools just fine. Here is the file dump using parquet-tools: >> >> row group 0 >> -------------------------------------------------------------------------------- >> col_a: BINARY UNCOMPRESSED DO:0 FPO:4 SZ:89/89/1.00 VC:9 ENC >> [more]... >> col_b: BINARY UNCOMPRESSED DO:0 FPO:93 SZ:89/89/1.00 VC:9 EN >> [more]... >> col_c: BINARY UNCOMPRESSED DO:0 FPO:182 SZ:89/89/1.00 VC:9 E >> [more]... >> col_d: >> .map: >> ..key: BINARY UNCOMPRESSED DO:0 FPO:271 SZ:29/29/1.00 VC:9 E >> [more]... >> ..value: >> ...value_tuple: BINARY UNCOMPRESSED DO:0 FPO:300 SZ:29/29/1.00 VC:9 E >> [more]... >> >> col_a TV=9 RL=0 DL=1 >> >> ---------------------------------------------------------------------------- >> page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9 >> >> col_b TV=9 RL=0 DL=1 >> >> ---------------------------------------------------------------------------- >> page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9 >> >> col_c TV=9 RL=0 DL=1 >> >> ---------------------------------------------------------------------------- >> page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9 >> >> col_d.map.key TV=9 RL=1 DL=2 >> >> ---------------------------------------------------------------------------- >> page 0: DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9 >> >> col_d.map.value.value_tuple TV=9 RL=2 DL=4 >> >> ---------------------------------------------------------------------------- >> page 0: DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9 >> >> BINARY col_a >> -------------------------------------------------------------------------------- >> *** row group 1 of 1, values 1 to 9 *** >> value 1: R:1 D:1 V:a1 >> value 2: R:1 D:1 V:a2 >> value 3: R:1 D:1 V:a3 >> value 4: R:1 D:1 V:a4 >> value 5: R:1 D:1 V:a5 >> value 6: R:1 D:1 V:a6 >> value 7: R:1 D:1 V:a7 >> value 8: R:1 D:1 V:a8 >> value 9: R:1 D:1 V:a9 >> >> BINARY col_b >> -------------------------------------------------------------------------------- >> *** row group 1 of 1, values 1 to 9 *** >> value 1: R:1 D:1 V:b1 >> value 2: R:1 D:1 V:b2 >> value 3: R:1 D:1 V:b3 >> value 4: R:1 D:1 V:b4 >> value 5: R:1 D:1 V:b5 >> value 6: R:1 D:1 V:b6 >> value 7: R:1 D:1 V:b7 >> value 8: R:1 D:1 V:b8 >> value 9: R:1 D:1 V:b9 >> >> BINARY col_c >> -------------------------------------------------------------------------------- >> *** row group 1 of 1, values 1 to 9 *** >> value 1: R:1 D:1 V:c1 >> value 2: R:1 D:1 V:c2 >> value 3: R:1 D:1 V:c3 >> value 4: R:1 D:1 V:c4 >> value 5: R:1 D:1 V:c5 >> value 6: R:1 D:1 V:c6 >> value 7: R:1 D:1 V:c7 >> value 8: R:1 D:1 V:c8 >> value 9: R:1 D:1 V:c9 >> >> BINARY col_d.map.key >> -------------------------------------------------------------------------------- >> *** row group 1 of 1, values 1 to 9 *** >> value 1: R:0 D:0 V:<null> >> value 2: R:0 D:0 V:<null> >> value 3: R:0 D:0 V:<null> >> value 4: R:0 D:0 V:<null> >> value 5: R:0 D:0 V:<null> >> value 6: R:0 D:0 V:<null> >> value 7: R:0 D:0 V:<null> >> value 8: R:0 D:0 V:<null> >> value 9: R:0 D:0 V:<null> >> >> BINARY col_d.map.value.value_tuple >> -------------------------------------------------------------------------------- >> *** row group 1 of 1, values 1 to 9 *** >> value 1: R:0 D:0 V:<null> >> value 2: R:0 D:0 V:<null> >> value 3: R:0 D:0 V:<null> >> value 4: R:0 D:0 V:<null> >> value 5: R:0 D:0 V:<null> >> value 6: R:0 D:0 V:<null> >> value 7: R:0 D:0 V:<null> >> value 8: R:0 D:0 V:<null> >> value 9: R:0 D:0 V:<null> >> >> >> I am happy to provide more information but any help is appreciated. >> >> >> On Sun, Nov 16, 2014 at 7:40 PM, Sadhan Sood <sadhan.s...@gmail.com> >> wrote: >> >>> Hi Cheng, >>> >>> I tried reading the parquet file(on which we were getting the exception) >>> through parquet-tools and it is able to dump the file and I can read the >>> metadata, etc. I also loaded the file through hive table and can run a >>> table scan query on it as well. Let me know if I can do more to help >>> resolve the problem, I'll run it through a debugger and see if I can get >>> more information on it in the meantime. >>> >>> Thanks, >>> Sadhan >>> >>> On Sun, Nov 16, 2014 at 4:35 AM, Cheng Lian <lian.cs....@gmail.com> >>> wrote: >>> >>>> (Forgot to cc user mail list) >>>> >>>> >>>> On 11/16/14 4:59 PM, Cheng Lian wrote: >>>> >>>> Hey Sadhan, >>>> >>>> Thanks for the additional information, this is helpful. Seems that >>>> some Parquet internal contract was broken, but I'm not sure whether it's >>>> caused by Spark SQL or Parquet, or even maybe the Parquet file itself was >>>> damaged somehow. I'm investigating this. In the meanwhile, would you mind >>>> to help to narrow down the problem by trying to scan exactly the same >>>> Parquet file with some other systems (e.g. Hive or Impala)? If other >>>> systems work, then there must be something wrong with Spark SQL. >>>> >>>> Cheng >>>> >>>> On Sun, Nov 16, 2014 at 1:19 PM, Sadhan Sood <sadhan.s...@gmail.com> >>>> wrote: >>>> >>>>> Hi Cheng, >>>>> >>>>> Thanks for your response. Here is the stack trace from yarn logs: >>>>> >>>>> Caused by: java.lang.ArrayIndexOutOfBoundsException: -1 >>>>> at java.util.ArrayList.elementData(ArrayList.java:418) >>>>> at java.util.ArrayList.get(ArrayList.java:431) >>>>> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) >>>>> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95) >>>>> at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80) >>>>> at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74) >>>>> at >>>>> parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282) >>>>> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131) >>>>> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96) >>>>> at >>>>> parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136) >>>>> at >>>>> parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96) >>>>> at >>>>> parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126) >>>>> at >>>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193) >>>>> ... 26 more >>>>> >>>>> >>>>> On Sat, Nov 15, 2014 at 9:28 AM, Cheng Lian <lian.cs....@gmail.com> >>>>> wrote: >>>>> >>>>>> Hi Sadhan, >>>>>> >>>>>> Could you please provide the stack trace of the >>>>>> ArrayIndexOutOfBoundsException (if any)? The reason why the first >>>>>> query succeeds is that Spark SQL doesn’t bother reading all data from the >>>>>> table to give COUNT(*). In the second case, however, the whole table >>>>>> is asked to be cached lazily via the cacheTable call, thus it’s >>>>>> scanned to build the in-memory columnar cache. Then thing went wrong >>>>>> while >>>>>> scanning this LZO compressed Parquet file. But unfortunately the stack >>>>>> trace at hand doesn’t indicate the root cause. >>>>>> >>>>>> Cheng >>>>>> >>>>>> On 11/15/14 5:28 AM, Sadhan Sood wrote: >>>>>> >>>>>> While testing SparkSQL on a bunch of parquet files (basically used to >>>>>> be a partition for one of our hive tables), I encountered this error: >>>>>> >>>>>> import org.apache.spark.sql.SchemaRDD >>>>>> import org.apache.hadoop.fs.FileSystem; >>>>>> import org.apache.hadoop.conf.Configuration; >>>>>> import org.apache.hadoop.fs.Path; >>>>>> >>>>>> val sqlContext = new org.apache.spark.sql.SQLContext(sc) >>>>>> >>>>>> val parquetFileRDD = sqlContext.parquetFile(parquetFile) >>>>>> parquetFileRDD.registerTempTable("xyz_20141109") >>>>>> sqlContext.sql("SELECT count(*) FROM xyz_20141109").collect() <-- >>>>>> works fine >>>>>> sqlContext.cacheTable("xyz_20141109") >>>>>> sqlContext.sql("SELECT count(*) FROM xyz_20141109").collect() <-- >>>>>> fails with an exception >>>>>> >>>>>> parquet.io.ParquetDecodingException: Can not read value at 0 in >>>>>> block -1 in file >>>>>> hdfs://xxxxxxxx::9000/event_logs/xyz/20141109/part-00009359b87ae-a949-3ded-ac3e-3a6bda3a4f3a-r-00009.lzo.parquet >>>>>> >>>>>> at >>>>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213) >>>>>> >>>>>> at >>>>>> parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.NewHadoopRDD$anon$1.hasNext(NewHadoopRDD.scala:145) >>>>>> >>>>>> at >>>>>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >>>>>> >>>>>> at >>>>>> scala.collection.Iterator$anon$11.hasNext(Iterator.scala:327) >>>>>> >>>>>> at >>>>>> scala.collection.Iterator$anon$14.hasNext(Iterator.scala:388) >>>>>> >>>>>> at >>>>>> org.apache.spark.sql.columnar.InMemoryRelation$anonfun$3$anon$1.hasNext(InMemoryColumnarTableScan.scala:136) >>>>>> >>>>>> at >>>>>> org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:248) >>>>>> >>>>>> at >>>>>> org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163) >>>>>> >>>>>> at >>>>>> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70) >>>>>> >>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:228) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) >>>>>> >>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) >>>>>> >>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) >>>>>> >>>>>> at >>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) >>>>>> >>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) >>>>>> >>>>>> at >>>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) >>>>>> >>>>>> at >>>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >>>>>> >>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:56) >>>>>> >>>>>> at >>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195) >>>>>> >>>>>> at >>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>>>>> >>>>>> at >>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>>>>> >>>>>> at java.lang.Thread.run(Thread.java:745) >>>>>> >>>>>> Caused by: java.lang.ArrayIndexOutOfBoundsException >>>>>> >>>>>> >>>>>> >>>>> >>>>> >>>> >>>> >>> >> > > > --------------------------------------------------------------------- > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > For additional commands, e-mail: user-h...@spark.apache.org >