Hi, I wonder if the pagerank implementation is correct. More specifically, I look at the following function from PageRank.scala <https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala> , which is given to Pregel:
def vertexProgram(id: VertexId, attr: (Double, Double), msgSum: Double): (Double, Double) = { val (oldPR, lastDelta) = attr val newPR = oldPR + (1.0 - resetProb) * msgSum (newPR, newPR - oldPR) } This line: val newPR = oldPR + (1.0 - resetProb) * msgSum makes no sense to me. Should it not be: val newPR = resetProb/graph.vertices.count() + (1.0 - resetProb) * msgSum ? Background: I wanted to implement pagerank with the damping factor (here: resetProb) divided by the number of nodes in the graph. Tom -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Pagerank-implementation-tp19013.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org