You can check in the worker logs for more accurate information(that are found under the work directory inside spark directory). I used to hit this issue with:
- Too many open files : Increasing the ulimit would solve this issue - Akka connection timeout/Framesize: Setting the following while creating sparkContext would solve it .set("spark.rdd.compress","true") > .set("spark.storage.memoryFraction","1") > .set("spark.core.connection.ack.wait.timeout","600") > .set("spark.akka.frameSize","50") Thanks Best Regards On Sat, Nov 1, 2014 at 12:28 AM, <jan.zi...@centrum.cz> wrote: > Hi, > > I am running my Spark job and I am getting ExecutorLostFailure (executor > lost) using PySpak. I don't get any Error in my code, but just this. So I > would like to ask, what can be possibly wrong. From the log it seems like > some kind of internal problem in Spark. > > Thank you in advance for any suggestions and help. > > 2014-10-31 18:13:11,423 : INFO : spark:track_progress:300 : Traceback > (most recent call last): > > INFO: File "/home/hadoop/preprocessor.py", line 69, in <module> > > 2014-10-31 18:13:11,423 : INFO : spark:track_progress:300 : File > "/home/hadoop/preprocessor.py", line 69, in <module> > > > > INFO: cleanedData.saveAsTextFile(sys.argv[3]) > > 2014-10-31 18:13:11,423 : INFO : spark:track_progress:300 : > cleanedData.saveAsTextFile(sys.argv[3]) > > INFO: File "/home/hadoop/spark/python/pyspark/rdd.py", line 1324, in > saveAsTextFile > > 2014-10-31 18:13:11,424 : INFO : spark:track_progress:300 : File > "/home/hadoop/spark/python/pyspark/rdd.py", line 1324, in saveAsTextFile > > INFO: keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path) > > 2014-10-31 18:13:11,424 : INFO : spark:track_progress:300 : > keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path) > > INFO: File > "/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", > line 538, in __call__ > > 2014-10-31 18:13:11,424 : INFO : spark:track_progress:300 : File > "/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", > line 538, in __call__ > > INFO: File > "/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line > 300, in get_return_value > > 2014-10-31 18:13:11,424 : INFO : spark:track_progress:300 : File > "/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line > 300, in get_return_value > > INFO: py4j.protocol.Py4JJavaError: An error occurred while calling > o47.saveAsTextFile. > > 2014-10-31 18:13:11,431 : INFO : spark:track_progress:300 : > py4j.protocol.Py4JJavaError: An error occurred while calling > o47.saveAsTextFile. > > INFO: : org.apache.spark.SparkException: Job aborted due to stage failure: > Task 20 in stage 0.0 failed 4 times, most recent failure: Lost task 20.3 in > stage 0.0 (TID 110, ip-172-31-26-147.us-west-2.compute.internal): > ExecutorLostFailure (executor lost) > > 2014-10-31 18:13:11,431 : INFO : spark:track_progress:300 : : > org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 > in stage 0.0 failed 4 times, most recent failure: Lost task 20.3 in stage > 0.0 (TID 110, ip-172-31-26-147.us-west-2.compute.internal): > ExecutorLostFailure (executor lost) > > INFO: Driver stacktrace: > > 2014-10-31 18:13:11,431 : INFO : spark:track_progress:300 : Driver > stacktrace: > > INFO: at org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185) > > 2014-10-31 18:13:11,432 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185) > > INFO: at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174) > > 2014-10-31 18:13:11,432 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174) > > INFO: at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173) > > 2014-10-31 18:13:11,432 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173) > > INFO: at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > > 2014-10-31 18:13:11,432 : INFO : spark:track_progress:300 : at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > > INFO: at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > > 2014-10-31 18:13:11,432 : INFO : spark:track_progress:300 : at > scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > > INFO: at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173) > > 2014-10-31 18:13:11,433 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173) > > INFO: at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) > > 2014-10-31 18:13:11,433 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) > > INFO: at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) > > 2014-10-31 18:13:11,433 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) > > INFO: at scala.Option.foreach(Option.scala:236) > > 2014-10-31 18:13:11,433 : INFO : spark:track_progress:300 : at > scala.Option.foreach(Option.scala:236) > > INFO: at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688) > > 2014-10-31 18:13:11,433 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688) > > INFO: at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391) > > 2014-10-31 18:13:11,434 : INFO : spark:track_progress:300 : at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391) > > INFO: at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > > 2014-10-31 18:13:11,434 : INFO : spark:track_progress:300 : at > akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > > INFO: at akka.actor.ActorCell.invoke(ActorCell.scala:456) > > 2014-10-31 18:13:11,434 : INFO : spark:track_progress:300 : at > akka.actor.ActorCell.invoke(ActorCell.scala:456) > > INFO: at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > > 2014-10-31 18:13:11,434 : INFO : spark:track_progress:300 : at > akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > > INFO: at akka.dispatch.Mailbox.run(Mailbox.scala:219) > > 2014-10-31 18:13:11,434 : INFO : spark:track_progress:300 : at > akka.dispatch.Mailbox.run(Mailbox.scala:219) > > INFO: at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > > 2014-10-31 18:13:11,435 : INFO : spark:track_progress:300 : at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > > INFO: at > scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > > 2014-10-31 18:13:11,435 : INFO : spark:track_progress:300 : at > scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > > INFO: at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > > 2014-10-31 18:13:11,435 : INFO : spark:track_progress:300 : at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > > INFO: at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > > 2014-10-31 18:13:11,435 : INFO : spark:track_progress:300 : at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > > INFO: at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > > 2014-10-31 18:13:11,435 : INFO : spark:track_progress:300 : at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > > INFO: > > 2014-10-31 18:13:11,436 : INFO : spark:track_progress:300 : > > INFO: > > 2014-10-31 18:13:12,315 : INFO : spark:track_progress:300 : > > INFO: > > > > 2014-10-31 18:13:12,315 : INFO : spark:track_progress:309 : > > > --------------------------------------------------------------------- > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > For additional commands, e-mail: user-h...@spark.apache.org >