TL;DR - a spark SQL job fails with an OOM (Out of heap space) error. If given "--executor-memory" values, it won't even start. Even (!) if the values given ARE THE SAME AS THE DEFAULT.
Without --executor-memory: 14/10/16 17:14:58 INFO TaskSetManager: Serialized task 1.0:64 as 14710 bytes in 1 ms 14/10/16 17:14:58 WARN TaskSetManager: Lost TID 26 (task 1.0:25) 14/10/16 17:14:58 WARN TaskSetManager: Loss was due to java.lang.OutOfMemoryError java.lang.OutOfMemoryError: Java heap space at parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:609) at parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:360) ... USING --executor-memory (WITH ANY VALUE), even "1G" which is the default: Parsed arguments: master spark://<redacted>:7077 deployMode null executorMemory 1G ... System properties: spark.executor.memory -> 1G spark.eventLog.enabled -> true ... 14/10/16 17:14:23 INFO TaskSchedulerImpl: Adding task set 1.0 with 678 tasks 14/10/16 17:14:38 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient memory Spark 1.0.0. Is this a bug?