TL;DR - a spark SQL job fails with an OOM (Out of heap space) error.  If
given "--executor-memory" values, it won't even start.  Even (!) if the
values given ARE THE SAME AS THE DEFAULT.



Without --executor-memory:

14/10/16 17:14:58 INFO TaskSetManager: Serialized task 1.0:64 as 14710
bytes in 1 ms
14/10/16 17:14:58 WARN TaskSetManager: Lost TID 26 (task 1.0:25)
14/10/16 17:14:58 WARN TaskSetManager: Loss was due to
java.lang.OutOfMemoryError
java.lang.OutOfMemoryError: Java heap space
        at
parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:609)
        at
parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:360)
...


USING --executor-memory (WITH ANY VALUE), even "1G" which is the default:

Parsed arguments:
  master                  spark://<redacted>:7077
  deployMode              null
  executorMemory          1G
...

System properties:
spark.executor.memory -> 1G
spark.eventLog.enabled -> true
...

14/10/16 17:14:23 INFO TaskSchedulerImpl: Adding task set 1.0 with 678 tasks
14/10/16 17:14:38 WARN TaskSchedulerImpl: Initial job has not accepted any
resources; check your cluster UI to ensure that workers are registered and
have sufficient memory



Spark 1.0.0.  Is this a bug?

Reply via email to