Sorry for bringing this out again, as I have no clue what could have caused this.
I turned on DEBUG logging and did see the jar containing the SerDe class was scanned. More interestingly, I saw the same exception (org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Unresolved attributes) when running simple select on valid column names and malformed column names. This lead me to suspect that syntactical breaks somewhere. select [valid_column] from table limit 5; select [malformed_typo_column] from table limit 5; On Mon, Oct 13, 2014 at 6:04 PM, Chen Song <chen.song...@gmail.com> wrote: > In Hive, the table was created with custom SerDe, in the following way. > > row format serde "abc.ProtobufSerDe" > > with serdeproperties ("serialization.class"= > "abc.protobuf.generated.LogA$log_a") > > When I start spark-sql shell, I always got the following exception, even > for a simple query. > > select user from log_a limit 25; > > I can desc the table without any problem. When I explain the query, I got > the same exception. > > > 14/10/13 22:01:13 INFO impl.AMRMClientImpl: Waiting for application to be > successfully unregistered. > > Exception in thread "Driver" java.lang.reflect.InvocationTargetException > > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > > at java.lang.reflect.Method.invoke(Method.java:606) > > at > org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:162) > > Caused by: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: > Unresolved attributes: 'user, tree: > > Project ['user] > > Filter (dh#4 = 2014-10-13 05) > > LowerCaseSchema > > MetastoreRelation test, log_a, None > > > at > org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$$anonfun$apply$1.applyOrElse(Analyzer.scala:72) > > at > org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$$anonfun$apply$1.applyOrElse(Analyzer.scala:70) > > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:165) > > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:183) > > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > > at scala.collection.TraversableOnce$class.to > (TraversableOnce.scala:273) > > at scala.collection.AbstractIterator.to(Iterator.scala:1157) > > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:212) > > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:168) > > at > org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:156) > > at > org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$.apply(Analyzer.scala:70) > > at > org.apache.spark.sql.catalyst.analysis.Analyzer$CheckResolution$.apply(Analyzer.scala:68) > > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61) > > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59) > > at > scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51) > > at > scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60) > > at > scala.collection.mutable.WrappedArray.foldLeft(WrappedArray.scala:34) > > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59) > > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51) > > at scala.collection.immutable.List.foreach(List.scala:318) > > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51) > > at > org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:397) > > at > org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:397) > > at > org.apache.spark.sql.hive.HiveContext$QueryExecution.optimizedPlan$lzycompute(HiveContext.scala:358) > > at > org.apache.spark.sql.hive.HiveContext$QueryExecution.optimizedPlan(HiveContext.scala:357) > > at > org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:402) > > at > org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:400) > > at > org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:406) > > at > org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:406) > > at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:438) > > at com.appnexus.data.spark.sql.Test$.main(Test.scala:23) > > at com.appnexus.data.spark.sql.Test.main(Test.scala) > > ... 5 more > > > -- > Chen Song > > -- Chen Song