I get the following stacktrace if it is of any help. 14/09/23 15:46:02 INFO scheduler.DAGScheduler: failed: Set() 14/09/23 15:46:02 INFO scheduler.DAGScheduler: Missing parents for Stage 7: List() 14/09/23 15:46:02 INFO scheduler.DAGScheduler: Submitting Stage 7 (MapPartitionsRDD[24] at combineByKey at NaiveBayes.scala:91), which is now runnable 14/09/23 15:46:02 INFO executor.Executor: Finished task ID 7 14/09/23 15:46:02 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from Stage 7 (MapPartitionsRDD[24] at combineByKey at NaiveBayes.scala:91) 14/09/23 15:46:02 INFO scheduler.TaskSchedulerImpl: Adding task set 7.0 with 1 tasks 14/09/23 15:46:02 INFO scheduler.TaskSetManager: Starting task 7.0:0 as TID 8 on executor localhost: localhost (PROCESS_LOCAL) 14/09/23 15:46:02 INFO scheduler.TaskSetManager: Serialized task 7.0:0 as 535061 bytes in 1 ms 14/09/23 15:46:02 INFO executor.Executor: Running task ID 8 14/09/23 15:46:02 INFO storage.BlockManager: Found block broadcast_0 locally 14/09/23 15:46:03 INFO storage.BlockFetcherIterator$BasicBlockFetcherIterator: maxBytesInFlight: 50331648, targetRequestSize: 10066329 14/09/23 15:46:03 INFO storage.BlockFetcherIterator$BasicBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks 14/09/23 15:46:03 INFO storage.BlockFetcherIterator$BasicBlockFetcherIterator: Started 0 remote fetches in 1 ms 14/09/23 15:46:04 WARN collection.ExternalAppendOnlyMap: Spilling in-memory map of 452 MB to disk (1 time so far) 14/09/23 15:46:07 WARN collection.ExternalAppendOnlyMap: Spilling in-memory map of 452 MB to disk (2 times so far) 14/09/23 15:46:09 WARN collection.ExternalAppendOnlyMap: Spilling in-memory map of 438 MB to disk (3 times so far) 14/09/23 15:46:12 WARN collection.ExternalAppendOnlyMap: Spilling in-memory map of 479 MB to disk (4 times so far) 14/09/23 15:46:22 ERROR executor.Executor: Exception in task ID 8 java.lang.OutOfMemoryError: Java heap space at java.util.Arrays.copyOf(Arrays.java:3236) at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113) at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140) at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:71) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:193) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 14/09/23 15:46:22 WARN scheduler.TaskSetManager: Lost TID 8 (task 7.0:0) 14/09/23 15:46:22 ERROR executor.ExecutorUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker-1,5,main] java.lang.OutOfMemoryError: Java heap space at java.util.Arrays.copyOf(Arrays.java:3236) at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113) at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140) at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:71) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:193) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 14/09/23 15:46:22 WARN scheduler.TaskSetManager: Loss was due to java.lang.OutOfMemoryError java.lang.OutOfMemoryError: Java heap space at java.util.Arrays.copyOf(Arrays.java:3236) at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113) at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140) at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:71) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:193) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 14/09/23 15:46:22 ERROR scheduler.TaskSetManager: Task 7.0:0 failed 1 times; aborting job 14/09/23 15:46:22 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 7.0, whose tasks have all completed, from pool 14/09/23 15:46:22 INFO scheduler.TaskSchedulerImpl: Cancelling stage 7 14/09/23 15:46:22 INFO scheduler.DAGScheduler: Failed to run collect at NaiveBayes.scala:96 Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 7.0:0 failed 1 times, most recent failure: Exception failure in TID 8 on host localhost: java.lang.OutOfMemoryError: Java heap space java.util.Arrays.copyOf(Arrays.java:3236) java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113) java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140) java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:71) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:193) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:635) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1234) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
----- Novice Big Data Programmer -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Out-of-memory-exception-in-MLlib-s-naive-baye-s-classification-training-tp14809p14880.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org