Hello,
I am trying to read a hive table that is stored in Avro DEFLATE files.
something simple like "SELECT * FROM X LIMIT 10"
I get 2 exceptions in the logs:


2014-09-23 09:27:50,157 WARN org.apache.spark.scheduler.TaskSetManager: Lost 
task 10.0 in stage 1.0 (TID 10, cl.local): org.apache.avro.AvroTypeException: 
Found com.a.bi.core.model.xxx.yyy, expecting 
org.apache.hadoop.hive.CannotDetermineSchemaSentinel, missing required field 
ERROR_ERROR_ERROR_ERROR_ERROR_ERROR_ERROR

org.apache.avro.io.ResolvingDecoder.doAction(ResolvingDecoder.java:231)

org.apache.avro.io.parsing.Parser.advance(Parser.java:88)

org.apache.avro.io.ResolvingDecoder.readFieldOrder(ResolvingDecoder.java:127)

org.apache.avro.generic.GenericDatumReader.readRecord(GenericDatumReader.java:176)

org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:151)

org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:142)

org.apache.avro.file.DataFileStream.next(DataFileStream.java:233)

org.apache.avro.file.DataFileStream.next(DataFileStream.java:220)

org.apache.hadoop.hive.ql.io.avro.AvroGenericRecordReader.next(AvroGenericRecordReader.java:149)

org.apache.hadoop.hive.ql.io.avro.AvroGenericRecordReader.next(AvroGenericRecordReader.java:52)

org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:219)

org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:188)

org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71)

org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)

scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)

scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)

org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.hasNext(InMemoryColumnarTableScan.scala:74)

org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:235)

org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163)

org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)

org.apache.spark.rdd.RDD.iterator(RDD.scala:227)

org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)

org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)

org.apache.spark.rdd.RDD.iterator(RDD.scala:229)

org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)

org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)

org.apache.spark.rdd.RDD.iterator(RDD.scala:229)

org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)

org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)

org.apache.spark.rdd.RDD.iterator(RDD.scala:229)

org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)

org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)

org.apache.spark.rdd.RDD.iterator(RDD.scala:229)

org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)

org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)

org.apache.spark.rdd.RDD.iterator(RDD.scala:229)

org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)

org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)

org.apache.spark.scheduler.Task.run(Task.scala:54)

org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)

java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)

java.lang.Thread.run(Thread.java:745)



2014-09-23 09:27:49,152 WARN org.apache.spark.scheduler.TaskSetManager: Lost 
task 2.0 in stage 1.0 (TID 2, cl.local): 
org.apache.hadoop.hive.serde2.avro.BadSchemaException:
org.apache.hadoop.hive.serde2.avro.AvroSerDe.deserialize(AvroSerDe.java:91)
org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$1.apply(TableReader.scala:279)
org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$1.apply(TableReader.scala:278)
scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:62)
org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryColumnarTableScan.scala:50)
org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:236)
org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163)
org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)
org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:54)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
java.lang.Thread.run(Thread.java:745)



I would note that Spark Sql works perfectly for me on non-avro hive tables.

Thanks.

________________________________
This message is confidential and is for the sole use of the intended 
recipient(s). It may also be privileged or otherwise protected by copyright or 
other legal rules. If you have received it by mistake please let us know by 
reply email and delete it from your system. It is prohibited to copy this 
message or disclose its content to anyone. Any confidentiality or privilege is 
not waived or lost by any mistaken delivery or unauthorized disclosure of the 
message. All messages sent to and from Agoda may be monitored to ensure 
compliance with company policies, to protect the company's interests and to 
remove potential malware. Electronic messages may be intercepted, amended, lost 
or deleted, or contain viruses.

Reply via email to