How about this. scala> val rdd2 = rdd.combineByKey( | (v: Int) => v.toLong, | (c: Long, v: Int) => c + v, | (c1: Long, c2: Long) => c1 + c2) rdd2: org.apache.spark.rdd.RDD[(String, Long)] = MapPartitionsRDD[9] at combineB yKey at <console>:14
xj @ Tokyo On Mon, Sep 15, 2014 at 3:06 PM, Tao Xiao <xiaotao.cs....@gmail.com> wrote: > I followd an example presented in the tutorial Learning Spark > <http://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html> > to compute the per-key average as follows: > > > val Array(appName) = args > val sparkConf = new SparkConf() > .setAppName(appName) > val sc = new SparkContext(sparkConf) > /* > * compute the per-key average of values > * results should be: > * A : 5.8 > * B : 14 > * C : 60.6 > */ > val rdd = sc.parallelize(List( > ("A", 3), ("A", 9), ("A", 12), ("A", 0), ("A", 5), > ("B", 4), ("B", 10), ("B", 11), ("B", 20), ("B", 25), > ("C", 32), ("C", 91), ("C", 122), ("C", 3), ("C", 55)), 2) > val avg = rdd.combineByKey( > (x:Int) => (x, 1), // java.lang.ClassCastException: scala.Tuple2$mcII$sp > cannot be cast to java.lang.Integer > (acc:(Int, Int), x) => (acc._1 + x, acc._2 + 1), > (acc1:(Int, Int), acc2:(Int, Int)) => (acc1._1 + acc2._1, acc1._2 + > acc2._2)) > .map{case (s, t) => (s, t._1/t._2.toFloat)} > avg.collect.foreach(t => println(t._1 + " ->" + t._2)) > > > > When I submitted the application, an exception of > "*java.lang.ClassCastException: > scala.Tuple2$mcII$sp cannot be cast to java.lang.Integer*" was thrown > out. The tutorial said that the first function of *combineByKey*, *(x:Int) > => (x, 1)*, should take a single element in the source RDD and return an > element of the desired type in the resulting RDD. In my application, we > take a single element of type *Int *from the source RDD and return a > tuple of type (*Int*, *Int*), which meets the requirements quite well. > But why would such an exception be thrown? > > I'm using CDH 5.0 and Spark 0.9 > > Thanks. > > >