How about this.

scala> val rdd2 = rdd.combineByKey(
     | (v: Int) => v.toLong,
     | (c: Long, v: Int) => c + v,
     | (c1: Long, c2: Long) => c1 + c2)
rdd2: org.apache.spark.rdd.RDD[(String, Long)] = MapPartitionsRDD[9] at
combineB
yKey at <console>:14

xj @ Tokyo

On Mon, Sep 15, 2014 at 3:06 PM, Tao Xiao <xiaotao.cs....@gmail.com> wrote:

> I followd an example presented in the tutorial Learning Spark
> <http://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html>
> to compute the per-key average as follows:
>
>
> val Array(appName) = args
> val sparkConf = new SparkConf()
> .setAppName(appName)
> val sc = new SparkContext(sparkConf)
> /*
>  * compute the per-key average of values
>  * results should be:
>  *    A : 5.8
>  *    B : 14
>  *    C : 60.6
>  */
> val rdd = sc.parallelize(List(
> ("A", 3), ("A", 9), ("A", 12), ("A", 0), ("A", 5),
> ("B", 4), ("B", 10), ("B", 11), ("B", 20), ("B", 25),
> ("C", 32), ("C", 91), ("C", 122), ("C", 3), ("C", 55)), 2)
> val avg = rdd.combineByKey(
> (x:Int) => (x, 1),  // java.lang.ClassCastException: scala.Tuple2$mcII$sp
> cannot be cast to java.lang.Integer
> (acc:(Int, Int), x) => (acc._1 + x, acc._2 + 1),
> (acc1:(Int, Int), acc2:(Int, Int)) => (acc1._1 + acc2._1, acc1._2 +
> acc2._2))
> .map{case (s, t) => (s, t._1/t._2.toFloat)}
>  avg.collect.foreach(t => println(t._1 + " ->" + t._2))
>
>
>
> When I submitted the application, an exception of 
> "*java.lang.ClassCastException:
> scala.Tuple2$mcII$sp cannot be cast to java.lang.Integer*" was thrown
> out. The tutorial said that the first function of *combineByKey*, *(x:Int)
> => (x, 1)*, should take a single element in the source RDD and return an
> element of the desired type in the resulting RDD. In my application, we
> take a single element of type *Int *from the source RDD and return a
> tuple of type (*Int*, *Int*), which meets the requirements quite well.
> But why would such an exception be thrown?
>
> I'm using CDH 5.0 and Spark 0.9
>
> Thanks.
>
>
>

Reply via email to