Hey Chengi, What's the version of Spark you are using? It have big improvements about broadcast in 1.1, could you try it?
On Sun, Sep 14, 2014 at 8:29 PM, Chengi Liu <chengi.liu...@gmail.com> wrote: > Any suggestions.. I am really blocked on this one > > On Sun, Sep 14, 2014 at 2:43 PM, Chengi Liu <chengi.liu...@gmail.com> wrote: >> >> And when I use sparksubmit script, I get the following error: >> >> py4j.protocol.Py4JJavaError: An error occurred while calling >> o26.trainKMeansModel. >> : org.apache.spark.SparkException: Job aborted due to stage failure: All >> masters are unresponsive! Giving up. >> at >> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031) >> at >> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >> at >> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) >> at scala.Option.foreach(Option.scala:236) >> at >> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:635) >> at >> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1234) >> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >> at akka.actor.ActorCell.invoke(ActorCell.scala:456) >> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >> at akka.dispatch.Mailbox.run(Mailbox.scala:219) >> at >> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >> at >> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >> at >> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >> at >> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >> >> >> My spark submit code is >> >> conf = SparkConf().set("spark.executor.memory", >> "32G").set("spark.akka.frameSize", "1000") >> sc = SparkContext(conf = conf) >> rdd = sc.parallelize(matrix,5) >> >> from pyspark.mllib.clustering import KMeans >> from math import sqrt >> clusters = KMeans.train(rdd, 5, maxIterations=2,runs=2, >> initializationMode="random") >> def error(point): >> center = clusters.centers[clusters.predict(point)] >> return sqrt(sum([x**2 for x in (point - center)])) >> >> WSSSE = rdd.map(lambda point: error(point)).reduce(lambda x, y: x + y) >> print "Within Set Sum of Squared Error = " + str(WSSSE) >> >> Which is executed as following: >> spark-submit --master $SPARKURL clustering_example.py --executor-memory >> 32G --driver-memory 60G >> >> On Sun, Sep 14, 2014 at 10:47 AM, Chengi Liu <chengi.liu...@gmail.com> >> wrote: >>> >>> How? Example please.. >>> Also, if I am running this in pyspark shell.. how do i configure >>> spark.akka.frameSize ?? >>> >>> >>> On Sun, Sep 14, 2014 at 7:43 AM, Akhil Das <ak...@sigmoidanalytics.com> >>> wrote: >>>> >>>> When the data size is huge, you better of use the >>>> torrentBroadcastFactory. >>>> >>>> Thanks >>>> Best Regards >>>> >>>> On Sun, Sep 14, 2014 at 2:54 PM, Chengi Liu <chengi.liu...@gmail.com> >>>> wrote: >>>>> >>>>> Specifically the error I see when I try to operate on rdd created by >>>>> sc.parallelize method >>>>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>>>> Serialized task 12:12 was 12062263 bytes which exceeds >>>>> spark.akka.frameSize >>>>> (10485760 bytes). Consider using broadcast variables for large values. >>>>> >>>>> On Sun, Sep 14, 2014 at 2:20 AM, Chengi Liu <chengi.liu...@gmail.com> >>>>> wrote: >>>>>> >>>>>> Hi, >>>>>> I am trying to create an rdd out of large matrix.... sc.parallelize >>>>>> suggest to use broadcast >>>>>> But when I do >>>>>> >>>>>> sc.broadcast(data) >>>>>> I get this error: >>>>>> >>>>>> Traceback (most recent call last): >>>>>> File "<stdin>", line 1, in <module> >>>>>> File "/usr/common/usg/spark/1.0.2/python/pyspark/context.py", line >>>>>> 370, in broadcast >>>>>> pickled = pickleSer.dumps(value) >>>>>> File "/usr/common/usg/spark/1.0.2/python/pyspark/serializers.py", >>>>>> line 279, in dumps >>>>>> def dumps(self, obj): return cPickle.dumps(obj, 2) >>>>>> SystemError: error return without exception set >>>>>> Help? >>>>>> >>>>> >>>> >>> >> > --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org