Hi folks,

I have been trying to run the AMPLab’s twitter streaming example 
(http://ampcamp.berkeley.edu/big-data-mini-course/realtime-processing-with-spark-streaming.html)
 in the last 2 days.I have encountered the same error messages as shown below:
14/08/24 17:14:22 ERROR client.AppClient$ClientActor: All masters are 
unresponsive! Giving up.
14/08/24 17:14:22 ERROR cluster.SparkDeploySchedulerBackend: Spark cluster 
looks dead, giving up.
[error] (Thread-39) org.apache.spark.SparkException: Job aborted: Spark cluster 
looks down
org.apache.spark.SparkException: Job aborted: Spark cluster looks down
    at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
    at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
    at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
    at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
    at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
    at scala.Option.foreach(Option.scala:236)
    at 
org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619)
    at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
    at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
    at akka.actor.ActorCell.invoke(ActorCell.scala:456)
    at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
    at akka.dispatch.Mailbox.run(Mailbox.scala:219)
    at 
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:262)
    at 
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:975)
    at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1478)
    at 
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)
[trace] Stack trace suppressed: run last compile:run for the full output.
-------------------------------------------
Time: 1408900463000 ms
-------------------------------------------

14/08/24 17:14:23 WARN scheduler.TaskSchedulerImpl: Initial job has not 
accepted any resources; check your cluster UI to ensure that workers are 
registered and have sufficient memory
-------------------------------------------
Time: 1408900464000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900465000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900466000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900467000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900468000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900469000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900470000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900471000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900472000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900473000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900474000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900475000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900476000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900477000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900478000 ms
-------------------------------------------

14/08/24 17:14:38 WARN scheduler.TaskSchedulerImpl: Initial job has not 
accepted any resources; check your cluster UI to ensure that workers are 
registered and have sufficient memory
-------------------------------------------
Time: 1408900479000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900480000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900481000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900482000 ms
-------------------------------------------

14/08/24 17:14:42 ERROR client.AppClient$ClientActor: All masters are 
unresponsive! Giving up.
-------------------------------------------
Time: 1408900483000 ms
-------------------------------------------

-------------------------------------------
Time: 1408900484000 ms
-------------------------------------------

I checked my cluster status and found 0 memory is used..
Workers: 5
Cores: 20 Total, 0 Used
Memory: 68.2 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed
Drivers: 0 Running, 0 Completed
Anyone can shed some light on this issue?

Thanks,
Senhua

Reply via email to