Spark memory settings let me very misunderstanding. My code is as follows.
spark-1.0.2-bin-2.4.1/bin/spark-submit --class SimpleApp \ --master yarn \ --deploy-mode cluster \ --queue sls_queue_1 \ --num-executors 3 \ --driver-memory 6g \ --executor-memory 10g \ --executor-cores 5 \ target/scala-2.10/simple-project_2.10-1.0.jar \ /user/www/abc/output/2014-08-*/* Set executor-memory 10g, But, see the nodemanager java process. Why is Xmx3072m instead of 10G? jdk1.7.0_67//bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx3072m -Djava.io.tmpdir=/data/hadoop/nodemanager/usercache/www/appcache/application_1408182086233_0013/container_1408182086233_0013_01_000004/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/data/hadoop/logs/nodemanager/application_1408182086233_0013/container_1408182086233_0013_01_000004 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA org.apache.hadoop.mapred.YarnChild 10.1.13.11 35389 attempt_1408182086233_0013_m_000002_0 4 Thx cente...@gmail.com|齐忠 --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org