Hi all,
Is it possible to use table with ORC format in Shark
version 0.9.1 with Spark 0.9.2 and Hive version 0.12.0..??
I have
tried creating the ORC table in Shark using the below
query
create table orc_table (x int, y string) stored as
orc
create table works, but when I try to insert values
from a text table containing 2 rows
insert into table
orc_table select * from text_table;
I get the below
exception
org.apache.spark.SparkException: Job
aborted: Task 3.0:1 failed 4 times (most recent failure: Exception
failure: org.apache.hadoop.hive.ql.metadata.HiveException:
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.hdfs.protocol.AlreadyBeingCreatedException):
Failed to create file
[/tmp/hive-windfarm/hive_2014-08-08_10-11-21_691_1945292644101251597/_task_tmp.-ext-10000/_tmp.000001_0]
for [DFSClient_attempt_201408081011_0000_m_000001_0_-341065575_80] on
client [<machine_ip>], because this file is already being created
by [DFSClient_attempt_201408081011_0000_m_000001_0_82854889_71] on
[192.168.22.40]
at
org.apache.hadoop.hdfs.server.namenode.FSNamesystem.recoverLeaseInternal(FSNamesystem.java:2548)
at
org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInternal(FSNamesystem.java:2306)
at
org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInt(FSNamesystem.java:2235)
at
org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFile(FSNamesystem.java:2188)
at
org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.create(NameNodeRpcServer.java:505)
at
org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.create(ClientNamenodeProtocolServerSideTranslatorPB.java:354)
at
org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at
org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:585)
at
org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1026)
at
org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1986)
at
org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1982)
at
java.security.AccessController.doPrivileged(Native Method)
at
javax.security.auth.Subject.doAs(Subject.java:415)
at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1554)
at
org.apache.hadoop.ipc.Server$Handler.run(Server.java:1980)
)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
at
scala.Option.foreach(Option.scala:236)
at
org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
at
akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at
akka.actor.ActorCell.invoke(ActorCell.scala:456)
at
akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at
akka.dispatch.Mailbox.run(Mailbox.scala:219)
at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at
scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
FAILED: Execution Error, return code -101
from shark.execution.SparkTask
Any idea how to overcome this..??
Thanks and regards
Vinay Kashyap