The logs provided in the image may not be enough for help. Here I have
copied the whole logs:

WARNING: Running python applications through ./bin/pyspark is deprecated as
of Spark 1.0.
Use ./bin/spark-submit <python file>

14/08/03 11:10:57 INFO SparkConf: Using Spark's default log4j profile:
org/apache/spark/log4j-defaults.properties
14/08/03 11:10:57 WARN SparkConf: In Spark 1.0 and later spark.local.dir
will be overridden by the value set by the
ter manager (via SPARK_LOCAL_DIRS in mesos/standalone and LOCAL_DIRS in
YARN).
14/08/03 11:10:57 WARN SparkConf:
SPARK_JAVA_OPTS was detected (set to '-Dspark.local.dir=/mnt/spark/').
This is deprecated in Spark 1.0+.

Please instead use:
 - ./spark-submit with conf/spark-defaults.conf to set defaults for an
application
 - ./spark-submit with --driver-java-options to set -X options for a driver
 - spark.executor.extraJavaOptions to set -X options for executors
 - SPARK_DAEMON_JAVA_OPTS to set java options for standalone daemons
(master or worker)

14/08/03 11:10:57 WARN SparkConf: Setting 'spark.executor.extraJavaOptions'
to '-Dspark.local.dir=/mnt/spark/' as a
-around.
14/08/03 11:10:57 WARN SparkConf: Setting 'spark.driver.extraJavaOptions'
to '-Dspark.local.dir=/mnt/spark/' as a wo
round.
14/08/03 11:10:57 WARN SparkConf:
SPARK_CLASSPATH was detected (set to '/home/hadoop/spark/jars/*').
This is deprecated in Spark 1.0+.

Please instead use:
 - ./spark-submit with --driver-class-path to augment the driver classpath
 - spark.executor.extraClassPath to augment the executor classpath

14/08/03 11:10:57 WARN SparkConf: Setting 'spark.executor.extraClassPath'
to '/home/hadoop/spark/jars/*' as a work-a
d.
14/08/03 11:10:57 WARN SparkConf: Setting 'spark.driver.extraClassPath' to
'/home/hadoop/spark/jars/*' as a work-aro

14/08/03 11:10:57 INFO SecurityManager: Changing view acls to: hadoop
14/08/03 11:10:57 INFO SecurityManager: SecurityManager: authentication
disabled; ui acls disabled; users with view
issions: Set(hadoop)
14/08/03 11:10:58 INFO Slf4jLogger: Slf4jLogger started
14/08/03 11:10:59 INFO Remoting: Starting remoting
14/08/03 11:10:59 INFO Remoting: Remoting started; listening on addresses
:[akka.tcp://sp...@ip-172-31-28-16.us-west
ompute.internal:60686]
14/08/03 11:10:59 INFO Remoting: Remoting now listens on addresses:
[akka.tcp://sp...@ip-172-31-28-16.us-west-2.comp
internal:60686]
14/08/03 11:10:59 INFO SparkEnv: Registering MapOutputTracker
14/08/03 11:10:59 INFO SparkEnv: Registering BlockManagerMaster
14/08/03 11:10:59 INFO DiskBlockManager: Created local directory at
/mnt/spark/spark-local-20140803111059-7fe1
14/08/03 11:10:59 INFO MemoryStore: MemoryStore started with capacity 297.0
MB.
14/08/03 11:10:59 INFO ConnectionManager: Bound socket to port 44258 with
id = ConnectionManagerId(ip-172-31-28-16.u
st-2.compute.internal,44258)
14/08/03 11:10:59 INFO BlockManagerMaster: Trying to register BlockManager
14/08/03 11:10:59 INFO BlockManagerInfo: Registering block manager
ip-172-31-28-16.us-west-2.compute.internal:44258
 297.0 MB RAM
14/08/03 11:10:59 INFO BlockManagerMaster: Registered BlockManager
14/08/03 11:10:59 INFO HttpServer: Starting HTTP Server
14/08/03 11:10:59 INFO HttpBroadcast: Broadcast server started at
http://172.31.28.16:46213
14/08/03 11:10:59 INFO HttpFileServer: HTTP File server directory is
/tmp/spark-b847aba0-05d5-4d0e-a717-686a61d83609
14/08/03 11:10:59 INFO HttpServer: Starting HTTP Server
14/08/03 11:11:05 INFO SparkUI: Started SparkUI at
http://ip-172-31-28-16.us-west-2.compute.internal:4040
14/08/03 11:11:06 INFO Utils: Copying
/home/hadoop/spark/bin/Learning_model_KMeans.py to
/tmp/spark-affb5b07-e3f9-4f
a93-70ffe464840c/Learning_model_KMeans.py
14/08/03 11:11:06 INFO SparkContext: Added file
file:/home/hadoop/spark/bin/Learning_model_KMeans.py at http://172.3
.16:57518/files/Learning_model_KMeans.py with timestamp 1407064266439
14/08/03 11:11:07 INFO MemoryStore: ensureFreeSpace(32886) called with
curMem=0, maxMem=311387750
14/08/03 11:11:07 INFO MemoryStore: Block broadcast_0 stored as values to
memory (estimated size 32.1 KB, free 296.9

Traceback (most recent call last):
  File "/home/hadoop/spark/bin/Learning_model_KMeans.py", line 52, in
<module>
    clusters = KMeans.train(parsedData, cluster_no,
maxIterations=10,runs=30, initializationMode="k-means||")
  File "/home/hadoop/spark/python/pyspark/mllib/clustering.py", line 85, in
train
    dataBytes._jrdd, k, maxIterations, runs, initializationMode)
  File
"/home/hadoop/spark/python/lib/py4j-0.8.1-src.zip/py4j/java_gateway.py",
line 537, in __call__
  File "/home/hadoop/spark/python/lib/py4j-0.8.1-src.zip/py4j/protocol.py",
line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling
o28.trainKMeansModel.
: java.lang.RuntimeException: Error in configuring object
        at
org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:93)
        at
org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:64)
        at
org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:117)
        at
org.apache.spark.rdd.HadoopRDD.getInputFormat(HadoopRDD.scala:155)
        at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:168)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at
org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:50)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at org.apache.spark.rdd.ZippedRDD.getPartitions(ZippedRDD.scala:54)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
        at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1094)
        at org.apache.spark.rdd.RDD.count(RDD.scala:847)
        at org.apache.spark.rdd.RDD.takeSample(RDD.scala:387)
        at
org.apache.spark.mllib.clustering.KMeans.initKMeansParallel(KMeans.scala:260)
        at
org.apache.spark.mllib.clustering.KMeans.runBreeze(KMeans.scala:143)
        at org.apache.spark.mllib.clustering.KMeans.run(KMeans.scala:126)
        at org.apache.spark.mllib.clustering.KMeans$.train(KMeans.scala:333)
        at
org.apache.spark.mllib.api.python.PythonMLLibAPI.trainKMeansModel(PythonMLLibAPI.scala:331)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
        at
py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
        at py4j.Gateway.invoke(Gateway.java:259)
        at
py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:207)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.reflect.InvocationTargetException
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at
org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:88)
        ... 57 more
Caused by: java.lang.IllegalArgumentException: Compression codec
com.hadoop.compression.lzo.LzoCodec not found.
        at
org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:96)
        at
org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:134)
        at
org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:38)
        ... 62 more
Caused by: java.lang.ClassNotFoundException:
com.hadoop.compression.lzo.LzoCodec
        at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
        at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
        at java.lang.Class.forName0(Native Method)
        at java.lang.Class.forName(Class.java:270)
        at
org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:820)
        at
org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:89)
        ... 64 more


On Sun, Aug 3, 2014 at 6:04 PM, Rahul Bhojwani <rahulbhojwani2...@gmail.com>
wrote:

> Hi,
>
> I used to run spark scripts on local machine. Now i am porting my codes to
> EMR and i am facing lots of problem.
>
> The main one now is that the spark script which is running properly on my
> local machine is giving error when run on Amazon EMR Cluster.
> Here is the error:
>
> [image: Inline image 1]
>
>
>
> What can be the possible reason?
> Thanks in advance
> --
>
>  [image: http://]
> Rahul K Bhojwani
> [image: http://]about.me/rahul_bhojwani
>      <http://about.me/rahul_bhojwani>
>
>



-- 

 [image: http://]
Rahul K Bhojwani
[image: http://]about.me/rahul_bhojwani
     <http://about.me/rahul_bhojwani>

Reply via email to