I imagine the issue is ultimately combination of Windows and (stock?) Apache Hadoop. I know that in the past, operations like 'chmod' didn't work on Windows since it assumed the existence of POSIX binaries. That should be long since patched up for 2.4.x but there may be a gotcha here that others can comment on.
Do I understand that you're trying to run entirely locally, without Hadoop at all? Then I think this sounds like https://issues.apache.org/jira/browse/SPARK-2356 which does deserve attention. The Hadoop APIs get tickled even when they're not used, and this can cause some initialization gotchas on Windows in particular. On Thu, Jul 17, 2014 at 6:16 PM, ShanxT <mail4.shash...@gmail.com> wrote: > Hi, > > I am receiving below error while submitting any spark example or scala > application. Really appreciate any help. > > spark version = 1.0.0 > hadoop version = 2.4.0 > Windows/Standalone mode > > 14/07/17 22:13:19 INFO TaskSchedulerImpl: Cancelling stage 0 > Exception in thread "main" org.apache.spark.SparkException: Job aborted due > to stage failure: Task 0.0:0 failed 4 times, most recent failure: Exception > failure in TID 6 o > n host java.lang.NullPointerException > java.lang.ProcessBuilder.start(ProcessBuilder.java:1012) > org.apache.hadoop.util.Shell.runCommand(Shell.java:445) > org.apache.hadoop.util.Shell.run(Shell.java:418) > > org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:650) > org.apache.hadoop.fs.FileUtil.chmod(FileUtil.java:873) > org.apache.hadoop.fs.FileUtil.chmod(FileUtil.java:853) > org.apache.spark.util.Utils$.fetchFile(Utils.scala:421) > > org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$updateDependencies$6.apply(Executor.scala:332) > > org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$updateDependencies$6.apply(Executor.scala:330) > > scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772) > > scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98) > > scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98) > > scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:226) > scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:39) > scala.collection.mutable.HashMap.foreach(HashMap.scala:98) > > scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771) > > org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$updateDependencies(Executor.scala:330) > > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:168) > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > java.lang.Thread.run(Thread.java:745) > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1033) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at > scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:633) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1207) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > at > scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > Exception in thread "delete Spark temp dir > C:\Users\~1\AppData\Local\Temp\spark-88e26679-5a8f-4a37-bf02-41f4b2b46d8f" > java.io.IOException: Failed to delete: C:\User > s\~1\AppData\Local\Temp\spark-88e26679-5a8f-4a37-bf02-41f4b2b46d8f\jars\spark-examples-1.0.0-hadoop2.4.0.jar > at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:599) > at > org.apache.spark.util.Utils$$anonfun$deleteRecursively$1.apply(Utils.scala:593) > at > org.apache.spark.util.Utils$$anonfun$deleteRecursively$1.apply(Utils.scala:592) > at > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > at > scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) > at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:592) > at > org.apache.spark.util.Utils$$anonfun$deleteRecursively$1.apply(Utils.scala:593) > at > org.apache.spark.util.Utils$$anonfun$deleteRecursively$1.apply(Utils.scala:592) > at > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > at > scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) > at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:592) > at org.apache.spark.util.Utils$$anon$4.run(Utils.scala:275) > 14/07/17 22:13:20 INFO TaskSchedulerImpl: Stage 0 was cancelled > > > > > -- > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/Error-while-running-example-scala-application-using-spark-submit-tp10056.html > Sent from the Apache Spark User List mailing list archive at Nabble.com.