Ah, good catch, that seems to be it.

I'd use 1.0.1, except I've been hitting up against SPARK-2471
<https://issues.apache.org/jira/browse/SPARK-2471> with that version, which
doesn't let me access my data in S3. :(

OK, at least I know this has probably already been fixed.

Nick


On Tue, Jul 15, 2014 at 2:20 AM, Michael Armbrust <mich...@databricks.com>
wrote:

> You might be hitting SPARK-1994
> <https://issues.apache.org/jira/browse/SPARK-1994>, which is fixed in
> 1.0.1.
>
>
> On Mon, Jul 14, 2014 at 11:16 PM, Nick Chammas <nicholas.cham...@gmail.com
> > wrote:
>
>> I’m running this query against RDD[Tweet], where Tweet is a simple case
>> class with 4 fields.
>>
>> sqlContext.sql("""
>>   SELECT user, COUNT(*) as num_tweets
>>   FROM tweets
>>   GROUP BY user
>>   ORDER BY
>>     num_tweets DESC,
>>     user ASC
>>   ;
>> """).take(5)
>>
>> The first time I run this, it throws the following:
>>
>> 14/07/15 06:11:51 ERROR TaskSetManager: Task 12.0:0 failed 4 times; aborting 
>> job
>> org.apache.spark.SparkException: Job aborted due to stage failure: Task 
>> 12.0:0 failed 4 times, most recent failure: Exception failure in TID 978 on 
>> host ip-10-144-204-254.ec2.internal: java.lang.ClassCastException: 
>> java.lang.Long cannot be cast to java.lang.String
>>         scala.math.Ordering$String$.compare(Ordering.scala:329)
>>         
>> org.apache.spark.sql.catalyst.expressions.RowOrdering.compare(Row.scala:227)
>>         
>> org.apache.spark.sql.catalyst.expressions.RowOrdering.compare(Row.scala:210)
>>         java.util.TimSort.mergeLo(TimSort.java:687)
>>         java.util.TimSort.mergeAt(TimSort.java:483)
>>         java.util.TimSort.mergeCollapse(TimSort.java:410)
>>         java.util.TimSort.sort(TimSort.java:214)
>>         java.util.TimSort.sort(TimSort.java:173)
>>         java.util.Arrays.sort(Arrays.java:659)
>>         scala.collection.SeqLike$class.sorted(SeqLike.scala:615)
>>         scala.collection.mutable.ArrayOps$ofRef.sorted(ArrayOps.scala:108)
>>         
>> org.apache.spark.sql.execution.Sort$$anonfun$execute$3$$anonfun$apply$4.apply(basicOperators.scala:154)
>>         
>> org.apache.spark.sql.execution.Sort$$anonfun$execute$3$$anonfun$apply$4.apply(basicOperators.scala:154)
>>         org.apache.spark.rdd.RDD$$anonfun$12.apply(RDD.scala:559)
>>         org.apache.spark.rdd.RDD$$anonfun$12.apply(RDD.scala:559)
>>         
>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>>         org.apache.spark.sql.SchemaRDD.compute(SchemaRDD.scala:110)
>>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>>         org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
>>         org.apache.spark.scheduler.Task.run(Task.scala:51)
>>         org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187)
>>         
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>         
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>         java.lang.Thread.run(Thread.java:744)
>> Driver stacktrace:
>>     at 
>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1033)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015)
>>     at 
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633)
>>     at scala.Option.foreach(Option.scala:236)
>>     at 
>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:633)
>>     at 
>> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1207)
>>     at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>>     at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>>     at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>>     at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>>     at 
>> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>>     at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>>     at 
>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>>     at 
>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>>     at 
>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>
>> If I immediately re-run the query, it works fine. I’ve been able to
>> reproduce this a few times. If I run other, simpler SELECT queries first
>> and then this one, it also gets around the problem. Strange…
>>
>> I’m on 1.0.0 on EC2.
>>
>> Nick
>> ​
>>
>> ------------------------------
>> View this message in context: Spark SQL throws ClassCastException on
>> first try; works on second
>> <http://apache-spark-user-list.1001560.n3.nabble.com/Spark-SQL-throws-ClassCastException-on-first-try-works-on-second-tp9720.html>
>> Sent from the Apache Spark User List mailing list archive
>> <http://apache-spark-user-list.1001560.n3.nabble.com/> at Nabble.com.
>>
>
>

Reply via email to