Hi Spark developers, I have the following hqls that spark will throw exceptions of this kind: 14/07/10 15:07:55 INFO TaskSetManager: Loss was due to org.apache.spark.TaskKilledException [duplicate 17] org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0:736 failed 4 times, most recent failure: Exception failure in TID 167 on host etl2-node05: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: No function to evaluate expression. type: UnresolvedAttribute, tree: 'm.id
org.apache.spark.sql.catalyst.analysis.UnresolvedAttribute.eval(unresolved.scala:59) org.apache.spark.sql.catalyst.expressions.Equals.eval(predicates.scala:151) org.apache.spark.sql.execution.Filter$$anonfun$2$$anonfun$apply$1.apply(basicOperators.scala:52) org.apache.spark.sql.execution.Filter$$anonfun$2$$anonfun$apply$1.apply(basicOperators.scala:52) scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:390) scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) scala.collection.Iterator$class.foreach(Iterator.scala:727) scala.collection.AbstractIterator.foreach(Iterator.scala:1157) scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) scala.collection.AbstractIterator.to(Iterator.scala:1157) scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) scala.collection.AbstractIterator.toArray(Iterator.scala:1157) org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717) org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717) org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1080) org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1080) org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111) org.apache.spark.scheduler.Task.run(Task.scala:51) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187) java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) java.lang.Thread.run(Thread.java:662) The hql looks like this (I trimmed the hql down to the essentials to demonstrate the potential bugs, the actual join is more complex and irrelevant to the bug): val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) import hiveContext._ hql("USE test") hql("select id from m").registerAsTable("m") hql("select s.id from m join s on (s.id=m.id)").collect().foreach(println) Apparently, spark is unable to understand the m.id in the "(s.id=m.id)". If I change it to: hql("select m_id from m").registerAsTable("m") hql("select s.id from m join s on (s.id=m_id)").collect().foreach(println) It will work. Am I doing something wrong or it is a bug in spark sql? Best Regards, Jerry