I would go with Spark only if you are certain that you are going to scale
out in the near future.
You can change the default storage of RDD to DISK_ONLY, that might remove
issues around any rdd leveraging memory. Thr are some functions
particularly sortbykey that require data to fit in memory to work, so you
may be hitting some of those walls too.
Regards
Mayur

Mayur Rustagi
Ph: +1 (760) 203 3257
http://www.sigmoidanalytics.com
@mayur_rustagi <https://twitter.com/mayur_rustagi>



On Fri, Jul 4, 2014 at 2:36 PM, Igor Pernek <i...@pernek.net> wrote:

>  Hi all!
>
> I have a folder with 150 G of txt files (around 700 files, on average each
> 200 MB).
>
> I'm using scala to process the files and calculate some aggregate
> statistics in the end. I see two possible approaches to do that: - manually
> loop through all the files, do the calculations per file and merge the
> results in the end - read the whole folder to one RDD, do all the
> operations on this single RDD and let spark do all the parallelization
>
> I'm leaning towards the second approach as it seems cleaner (no need for
> parallelization specific code), but I'm wondering if my scenario will fit
> the constraints imposed by my hardware and data. I have one workstation
> with 16 threads and 64 GB of RAM available (so the parallelization will be
> strictly local between different processor cores). I might scale the
> infrastructure with more machines later on, but for now I would just like
> to focus on tunning the settings for this one workstation scenario.
>
> The code I'm using: - reads TSV files, and extracts meaningful data to
> (String, String, String) triplets - afterwards some filtering, mapping and
> grouping is performed - finally, the data is reduced and some aggregates
> are calculated
>
> I've been able to run this code with a single file (~200 MB of data),
> however I get a java.lang.OutOfMemoryError: GC overhead limit exceeded
> and/or a Java out of heap exception when adding more data (the application
> breaks with 6GB of data but I would like to use it with 150 GB of data).
>
> I guess I would have to tune some parameters to make this work. I would
> appreciate any tips on how to approach this problem (how to debug for
> memory demands). I've tried increasing the 'spark.executor.memory' and
> using a smaller number of cores (the rational being that each core needs
> some heap space), but this didn't solve my problems.
>
> I don't need the solution to be very fast (it can easily run for a few
> hours even days if needed). I'm also not caching any data, but just saving
> them to the file system in the end. If you think it would be more feasible
> to just go with the manual parallelization approach, I could do that as
> well.
>
> Thanks,
>
> Igor
>

Reply via email to