Hi all, I¹m trying to use JavaRDD.mapToPair(), but it fails with NPE on the executor. The PairFunction used in the call is null for some reason. Any comments/help would be appreciated!
My setup is, * Java 7 * Spark 1.0.0 * Hadoop 2.0.0-mr1-cdh4.6.0 Here¹s the code snippet. > import org.apache.spark.SparkConf; > > import org.apache.spark.api.java.JavaPairRDD; > > import org.apache.spark.api.java.JavaRDD; > > import org.apache.spark.api.java.JavaSparkContext; > > import org.apache.spark.api.java.function.PairFunction; > > > > import scala.Tuple2; > > > > public class Test { > > public static void main(String[] args) { > > SparkConf conf = new SparkConf() > > .setMaster("spark://mymaster") > > .setAppName("MyApp") > > .setSparkHome("/my/spark/home"); > > > > JavaSparkContext sc = new JavaSparkContext(conf); > > sc.addJar("/path/to/jar"); // ship the jar of this class > > JavaRDD<String> rdd = sc.textFile("/path/to/nums.csv²); // nums.csv > simply has one integer per line > > JavaPairRDD<Integer, Integer> pairRdd = rdd.mapToPair(new > MyPairFunction()); > > > > System.out.println(pairRdd.collect()); > > } > > > > private static final class MyPairFunction implements PairFunction<String, > Integer, Integer> { > > private static final long serialVersionUID = 1L; > > > > @Override > > public Tuple2<Integer, Integer> call(String s) throws Exception { > > return new Tuple2<Integer, Integer>(Integer.parseInt(s), > Integer.parseInt(s)); > > } > > } > > } > > Here¹s the stack trace. > > Exception in thread "main" 14/06/24 14:39:01 INFO scheduler.TaskSchedulerImpl: > Removed TaskSet 0.0, whose tasks have all completed, from pool > > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0:0 > failed 4 times, most recent failure: Exception failure in TID 6 on host > 10.160.24.216: java.lang.NullPointerException > > > org.apache.spark.api.java.JavaPairRDD$$anonfun$pairFunToScalaFun$1.apply(JavaP > airRDD.scala:750) > > > org.apache.spark.api.java.JavaPairRDD$$anonfun$pairFunToScalaFun$1.apply(JavaP > airRDD.scala:750) > > scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > > scala.collection.Iterator$class.foreach(Iterator.scala:727) > > scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > > > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > > > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > > > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > > scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) > > scala.collection.AbstractIterator.to(Iterator.scala:1157) > > > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > > scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > > > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > > scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > > org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717) > > org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717) > > > org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1080) > > > org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1080) > > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111) > > org.apache.spark.scheduler.Task.run(Task.scala:51) > > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187) > > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145> ) > > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615> ) > > java.lang.Thread.run(Thread.java:722) > > Driver stacktrace: > > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGSchedule > r$$failJobAndIndependentStages(DAGScheduler.scala:1033) > > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGSchedul > er.scala:1017) > > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGSchedul > er.scala:1015) > > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > > at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015) > > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(D > AGScheduler.scala:633) > > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(D > AGScheduler.scala:633) > > at scala.Option.foreach(Option.scala:236) > > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala > :633) > > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.ap > plyOrElse(DAGScheduler.scala:1207) > > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispa > tcher.scala:386) > > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:133 > 9) > > at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:1 > 07) Mingyu
smime.p7s
Description: S/MIME cryptographic signature