Does this continue in newer versions? (I'm on 0.8.0 now)

When I use .distinct() on moderately large datasets (224GB, 8.5B rows,
I'm guessing about 500M are distinct) my jobs fail with:

14/04/17 15:04:02 INFO cluster.ClusterTaskSetManager: Loss was due to
java.io.FileNotFoundException
java.io.FileNotFoundException:
/tmp/spark-local-20140417145643-a055/3c/shuffle_1_218_1157 (Too many
open files)

ulimit -n tells me I can open 32000 files. Here's a plot of lsof on a
worker node during a failed .distinct():
http://i.imgur.com/wyBHmzz.png , you can see tasks fail when Spark
tries to open 32000 files.

I never ran into this in 0.7.3. Is there a parameter I can set to tell
Spark to use less than 32000 files?

On Mon, Mar 24, 2014 at 10:23 AM, Aaron Davidson <ilike...@gmail.com> wrote:
> Look up setting ulimit, though note the distinction between soft and hard
> limits, and that updating your hard limit may require changing
> /etc/security/limits.confand restarting each worker.
>
>
> On Mon, Mar 24, 2014 at 1:39 AM, Kane <kane.ist...@gmail.com> wrote:
>>
>> Got a bit further, i think out of memory error was caused by setting
>> spark.spill to false. Now i have this error, is there an easy way to
>> increase file limit for spark, cluster-wide?:
>>
>> java.io.FileNotFoundException:
>>
>> /tmp/spark-local-20140324074221-b8f1/01/temp_1ab674f9-4556-4239-9f21-688dfc9f17d2
>> (Too many open files)
>>         at java.io.FileOutputStream.openAppend(Native Method)
>>         at java.io.FileOutputStream.<init>(FileOutputStream.java:192)
>>         at
>>
>> org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:113)
>>         at
>>
>> org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:174)
>>         at
>>
>> org.apache.spark.util.collection.ExternalAppendOnlyMap.spill(ExternalAppendOnlyMap.scala:191)
>>         at
>>
>> org.apache.spark.util.collection.ExternalAppendOnlyMap.insert(ExternalAppendOnlyMap.scala:141)
>>         at
>> org.apache.spark.Aggregator.combineValuesByKey(Aggregator.scala:59)
>>         at
>>
>> org.apache.spark.rdd.PairRDDFunctions$$anonfun$1.apply(PairRDDFunctions.scala:95)
>>         at
>>
>> org.apache.spark.rdd.PairRDDFunctions$$anonfun$1.apply(PairRDDFunctions.scala:94)
>>         at org.apache.spark.rdd.RDD$$anonfun$3.apply(RDD.scala:471)
>>         at org.apache.spark.rdd.RDD$$anonfun$3.apply(RDD.scala:471)
>>         at
>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:34)
>>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
>>         at
>>
>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
>>         at
>>
>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
>>         at org.apache.spark.scheduler.Task.run(Task.scala:53)
>>         at
>>
>> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213)
>>         at
>>
>> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49)
>>         at
>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178)
>>         at
>>
>> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
>>         at
>>
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
>>         at java.lang.Thread.run(Thread.java:662)
>>
>>
>>
>> --
>> View this message in context:
>> http://apache-spark-user-list.1001560.n3.nabble.com/distinct-on-huge-dataset-tp3025p3084.html
>> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>
>

Reply via email to