Thanks, Matei. I am running "Spark 1.0.0-SNAPSHOT built for Hadoop 1.0.4" from GitHub on 2014-03-18.
I tried batchSizes of 512, 10, and 1 and each got me further but none have succeeded. I can get this to work -- with manual interventions -- if I omit `parsed.persist(StorageLevel.MEMORY_AND_DISK)` and set batchSize=1. 5 of the 175 executors hung, and I had to kill the python process to get things going again. The only indication of this in the logs was `INFO python.PythonRDD: stdin writer to Python finished early`. With batchSize=1 and persist, a new memory error came up in several tasks, before the app was failed: 14/03/28 01:51:15 ERROR executor.Executor: Uncaught exception in thread Thread[stdin writer for python,5,main] java.lang.OutOfMemoryError: Java heap space at java.util.Arrays.copyOfRange(Arrays.java:2694) at java.lang.String.<init>(String.java:203) at java.nio.HeapCharBuffer.toString(HeapCharBuffer.java:561) at java.nio.CharBuffer.toString(CharBuffer.java:1201) at org.apache.hadoop.io.Text.decode(Text.java:350) at org.apache.hadoop.io.Text.decode(Text.java:327) at org.apache.hadoop.io.Text.toString(Text.java:254) at org.apache.spark.SparkContext$$anonfun$textFile$1.apply(SparkContext.scala:349) at org.apache.spark.SparkContext$$anonfun$textFile$1.apply(SparkContext.scala:349) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$12.next(Iterator.scala:357) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:242) at org.apache.spark.api.python.PythonRDD$$anon$2.run(PythonRDD.scala:85) There are other exceptions, but I think they all stem from the above, eg. org.apache.spark.SparkException: Error sending message to BlockManagerMaster Let me know if there are other settings I should try, or if I should try a newer snapshot. Thanks again! On Mon, Mar 24, 2014 at 9:35 AM, Matei Zaharia <matei.zaha...@gmail.com> wrote: > Hey Jim, > > In Spark 0.9 we added a "batchSize" parameter to PySpark that makes it group > multiple objects together before passing them between Java and Python, but > this may be too high by default. Try passing batchSize=10 to your > SparkContext constructor to lower it (the default is 1024). Or even > batchSize=1 to match earlier versions. > > Matei > > On Mar 21, 2014, at 6:18 PM, Jim Blomo <jim.bl...@gmail.com> wrote: > >> Hi all, I'm wondering if there's any settings I can use to reduce the >> memory needed by the PythonRDD when computing simple stats. I am >> getting OutOfMemoryError exceptions while calculating count() on big, >> but not absurd, records. It seems like PythonRDD is trying to keep >> too many of these records in memory, when all that is needed is to >> stream through them and count. Any tips for getting through this >> workload? >> >> >> Code: >> session = sc.textFile('s3://...json.gz') # ~54GB of compressed data >> >> # the biggest individual text line is ~3MB >> parsed = session.map(lambda l: l.split("\t",1)).map(lambda (y,s): >> (loads(y), loads(s))) >> parsed.persist(StorageLevel.MEMORY_AND_DISK) >> >> parsed.count() >> # will never finish: executor.Executor: Uncaught exception will FAIL >> all executors >> >> Incidentally the whole app appears to be killed, but this error is not >> propagated to the shell. >> >> Cluster: >> 15 m2.xlarges (17GB memory, 17GB swap, spark.executor.memory=10GB) >> >> Exception: >> java.lang.OutOfMemoryError: Java heap space >> at >> org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:132) >> at >> org.apache.spark.api.python.PythonRDD$$anon$1.next(PythonRDD.scala:120) >> at >> org.apache.spark.api.python.PythonRDD$$anon$1.next(PythonRDD.scala:113) >> at scala.collection.Iterator$class.foreach(Iterator.scala:727) >> at >> org.apache.spark.api.python.PythonRDD$$anon$1.foreach(PythonRDD.scala:113) >> at >> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) >> at >> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) >> at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:94) >> at org.apache.spark.rdd.RDD.iterator(RDD.scala:220) >> at >> org.apache.spark.api.python.PythonRDD$$anon$2.run(PythonRDD.scala:85) >