You can set spark.local.dir to put this data somewhere other than /tmp if /tmp 
is full. Actually it’s recommended to have multiple local disks and set to to a 
comma-separated list of directories, one per disk.

Matei

On Mar 23, 2014, at 3:35 PM, Aaron Davidson <ilike...@gmail.com> wrote:

> On some systems, /tmp/ is an in-memory tmpfs file system, with its own size 
> limit. It's possible that this limit has been exceeded. You might try running 
> the "df" command to check to free space of "/tmp" or root if tmp isn't listed.
> 
> 3 GB also seems pretty low for the remaining free space of a disk. If your 
> disk size is in the TB range, it's possible that the last couple GB have 
> issues when being allocated due to fragmentation or reclamation policies.
> 
> 
> On Sun, Mar 23, 2014 at 3:06 PM, Ognen Duzlevski <og...@nengoiksvelzud.com> 
> wrote:
> Hello,
> 
> I have a weird error showing up when I run a job on my Spark cluster. The 
> version of spark is 0.9 and I have 3+ GB free on the disk when this error 
> shows up. Any ideas what I should be looking for?
> 
> [error] (run-main-0) org.apache.spark.SparkException: Job aborted: Task 
> 167.0:3 failed 4 times (most recent failure: Exception failure: 
> java.io.FileNotFoundException: 
> /tmp/spark-local-20140323214638-72df/31/shuffle_31_3_127 (No space left on 
> device))
> org.apache.spark.SparkException: Job aborted: Task 167.0:3 failed 4 times 
> (most recent failure: Exception failure: java.io.FileNotFoundException: 
> /tmp/spark-local-20140323214638-72df/31/shuffle_31_3_127 (No space left on 
> device))
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
>     at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>     at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
>     at scala.Option.foreach(Option.scala:236)
>     at 
> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619)
>     at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
> 
> Thanks!
> Ognen
> 

Reply via email to