Thanks Andrew. I was expecting this to be the issue.
Are there any pointers about how to change the serialization to Kryo ?




On Mon, Feb 24, 2014 at 10:17 PM, Andrew Ash <and...@andrewash.com> wrote:

> This is because Joda's DateTimeFormatter is not serializable (doesn't
> implement the empty Serializable interface)
> http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
>
> One ugly thing I've done before is to instantiate a new DateTimeFormatter
> in every line, so like this:
>
> myRDD.filter(x =>
> DateTimeFormat.forPattern("YYYY-mm-dd").parseString(x.getCreatedAt).isAfter(start)
> ).count
>
> It's very inefficient but it gets things closer to working.
>
> Another thing to try is to switch to using Kryo serialization instead of
> the default Java serialization, which I think did handle DTF formatting
> correctly.  Back in 0.7.x days though, there was an issue where some of the
> Joda libraries wouldn't correctly serialize with Kryo, but I think that's
> since been fixed:
> https://groups.google.com/forum/#!topic/cascalog-user/35cdnNIamKU
>
> HTH,
> Andrew
>
>
> On Mon, Feb 24, 2014 at 6:57 PM, Soumya Simanta 
> <soumya.sima...@gmail.com>wrote:
>
>> I want to filter a RDD by comparing dates.
>>
>> myRDD.filter( x => new DateTime(x.getCreatedAt).isAfter(start) ).count
>>
>>
>> I'm using the JodaTime library but I get an exception about a Jodatime
>> class not serializable.
>>
>> Is there a way to configure this or an easier alternative for this
>> problem.
>>
>>
>> org.apache.spark.SparkException: Job aborted: Task not serializable:
>> java.io.NotSerializableException: org.joda.time.format.DateTimeFormatter
>>
>> at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
>>
>> at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
>>
>> at
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>
>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>
>> at org.apache.spark.scheduler.DAGScheduler.org
>> $apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
>>
>> at org.apache.spark.scheduler.DAGScheduler.org
>> $apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:794)
>>
>> at org.apache.spark.scheduler.DAGScheduler.org
>> $apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:737)
>>
>> at
>> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:569)
>>
>> at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
>>
>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>>
>> at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>>
>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>>
>> at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>>
>> at
>> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>>
>> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>>
>> at
>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>>
>> at
>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>>
>> at
>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>
>
>

Reply via email to