Both have outdated versions, usually one can support you better if you upgrade to the newest. Firewall could be an issue here.
> On 26 May 2016, at 10:11, Nikolay Voronchikhin <nvoronchik...@gmail.com> > wrote: > > Hi PySpark users, > > We need to be able to run large Hive queries in PySpark 1.2.1. Users are > running PySpark on an Edge Node, and submit jobs to a Cluster that allocates > YARN resources to the clients. > We are using MapR as the Hadoop Distribution on top of Hive 0.13 and Spark > 1.2.1. > > > Currently, our process for writing queries works only for small result sets, > for example: > from pyspark.sql import HiveContext > sqlContext = HiveContext(sc) > results = sqlContext.sql("select column from database.table limit > 10").collect() > results > <outputs resultset here> > > > How do I save the HiveQL query to RDD first, then output the results? > > This is the error I get when running a query that requires output of 400,000 > rows: > from pyspark.sql import HiveContext > sqlContext = HiveContext(sc) > results = sqlContext.sql("select column from database.table").collect() > results > ... > /path/to/mapr/spark/spark-1.2.1/python/pyspark/sql.py in collect(self) > 1976 """ > 1977 with SCCallSiteSync(self.context) as css: > -> 1978 bytesInJava = > self._jschema_rdd.baseSchemaRDD().collectToPython().iterator() > 1979 cls = _create_cls(self.schema()) > 1980 return map(cls, > self._collect_iterator_through_file(bytesInJava)) > > /path/to/mapr/spark/spark-1.2.1/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py > in __call__(self, *args) > 536 answer = self.gateway_client.send_command(command) > 537 return_value = get_return_value(answer, self.gateway_client, > --> 538 self.target_id, self.name) > 539 > 540 for temp_arg in temp_args: > > /path/to/mapr/spark/spark-1.2.1/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py > in get_return_value(answer, gateway_client, target_id, name) > 298 raise Py4JJavaError( > 299 'An error occurred while calling {0}{1}{2}.\n'. > --> 300 format(target_id, '.', name), value) > 301 else: > 302 raise Py4JError( > > Py4JJavaError: An error occurred while calling o76.collectToPython. > : org.apache.spark.SparkException: Job aborted due to stage failure: > Exception while getting task result: java.io.IOException: Failed to connect > to cluster_node/IP_address:port > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420) > at akka.actor.Actor$class.aroundReceive(Actor.scala:465) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) > at akka.actor.ActorCell.invoke(ActorCell.scala:487) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238) > at akka.dispatch.Mailbox.run(Mailbox.scala:220) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > > > > For this example, ideally, this query should output the 400,000 row resultset. > > > Thanks for your help, > Nikolay Voronchikhin > https://www.linkedin.com/in/nvoronchikhin > E-mail: nvoronchik...@gmail.com > >