Has anyone else encountered issues when using a partitioned Parquet external tables in Hive on CDH 5.7 (Hive is running in map reduce mode) ? When I perform a simple query such as (I've removed any names/fields that I am not allowed to publicly share):
select * from user_event left join names on names.id = user_event.feature.id I get an error like: Error: java.lang.RuntimeException: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:179) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:453) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1693) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:507) at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:170) ... 8 more Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Unexpected exception: Illegal Capacity: -1 at org.apache.hadoop.hive.ql.exec.MapJoinOperator.processOp(MapJoinOperator.java:318) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:815) at org.apache.hadoop.hive.ql.exec.TableScanOperator.processOp(TableScanOperator.java:95) at org.apache.hadoop.hive.ql.exec.MapOperator$MapOpCtx.forward(MapOperator.java:157) at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:497) ... 9 more Caused by: java.lang.IllegalArgumentException: Illegal Capacity: -1 at java.util.ArrayList.<init>(ArrayList.java:156) at org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.copyToStandardObject(ObjectInspectorUtils.java:339) at org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.copyToStandardObject(ObjectInspectorUtils.java:366) at org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.copyToStandardObject(ObjectInspectorUtils.java:366) at org.apache.hadoop.hive.ql.exec.JoinUtil.computeValues(JoinUtil.java:193) at org.apache.hadoop.hive.ql.exec.CommonJoinOperator.getFilteredValue(CommonJoinOperator.java:408) at org.apache.hadoop.hive.ql.exec.MapJoinOperator.processOp(MapJoinOperator.java:302) ... 13 more This suggests that there is an issue within the mapjoin operator (the names table is very small). This appears to only occur when directly joining the Parquet backed table to the names table (which is stored in ORC). I've played around with various file formats, and the format of names does not seem to change the result, but if I first convert a sample of events to SequenceFile, the issues does not occur. I'm thinking that Hive is having an issue mapping the internal Parquet column types to hive data types, since I have to explicitly state the hive column layout. This schema and identical query works correctly in CDH 5.4.7 (both a modified version of Hive 1.1.0. As a test, I tried copying a subset of rows from user_event to a Hive managed Parquet table: create table tmp_event stored as parquet tblproperties ("parquet.compression"="SNAPPY") as select * from user_event limit 200; Oddly, this crashed as well: Diagnostic Messages for this Task: Error: java.lang.RuntimeException: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:179) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:453) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1693) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:507) at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:170) ... 8 more Caused by: parquet.io.ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead at parquet.io.MessageColumnIO$MessageColumnIORecordConsumer.endField(MessageColumnIO.java:271) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$ListDataWriter.write(DataWritableWriter.java:271) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$GroupDataWriter.write(DataWritableWriter.java:199) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$StructDataWriter.write(DataWritableWriter.java:229) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$GroupDataWriter.write(DataWritableWriter.java:199) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$StructDataWriter.write(DataWritableWriter.java:229) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$GroupDataWriter.write(DataWritableWriter.java:199) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter$MessageDataWriter.write(DataWritableWriter.java:215) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.write(DataWritableWriter.java:88) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriteSupport.write(DataWritableWriteSupport.java:59) at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriteSupport.write(DataWritableWriteSupport.java:31) at parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:116) at parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:123) at parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:42) at org.apache.hadoop.hive.ql.io.parquet.write.ParquetRecordWriterWrapper.write(ParquetRecordWriterWrapper.java:111) at org.apache.hadoop.hive.ql.io.parquet.write.ParquetRecordWriterWrapper.write(ParquetRecordWriterWrapper.java:124) at org.apache.hadoop.hive.ql.exec.FileSinkOperator.processOp(FileSinkOperator.java:697) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:815) at org.apache.hadoop.hive.ql.exec.SelectOperator.processOp(SelectOperator.java:84) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:815) at org.apache.hadoop.hive.ql.exec.TableScanOperator.processOp(TableScanOperator.java:95) at org.apache.hadoop.hive.ql.exec.MapOperator$MapOpCtx.forward(MapOperator.java:157) at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:497) ... 9 more The funny thing is that there are no "empty" fields/arrays, etc in the row it was processing at the moment (checked the logs in detail), but all the rows are very sparse (many NULLs). Has anyone encountered this or some similar error? Unfortunately this is blocking our deployment of CDH 5.7 to our production system which we are very excited to use in order to use Spark 1.6. These Hive jobs are required for ETL tasks. Thanks! -Nick Nicholas Szandor Hakobian Data Scientist Rally Health nicholas.hakob...@rallyhealth.com