Hi Christian,
As I didn’t find a well-documented reference to MultipleInputStreamOperator, 
let me sketch it (it’s Scala code, easy enough to be transformed to Java):

  *   Implements 4 inputs , the second is a broadcast stream
  *   ACHEP, CEIEP, V1EP, AMAP are typedef of the respective input types



//implement the operator
class YourEnrichmentOperator(params: StreamOperatorParameters[O])
  //specify number of inputs (4)
  extends AbstractStreamOperatorV2[O](params, 4)
    with MultipleInputStreamOperator[O]
    with Triggerable[K, VoidNamespace]
{
  @transient var collector: TimestampedCollector[O] = null
  @transient var internalTimerService: InternalTimerService[VoidNamespace] = 
null

  override def open(): Unit = {
    super.open()
    require(configuration != null, "Missing configuration")

    //setup collector and timer services (modelled after other operators)
    collector = new TimestampedCollector[O](output)
    internalTimerService = getInternalTimerService(
      "user-timers",
      VoidNamespaceSerializer.INSTANCE,
      this
    )
  }

 //implement each input
  val input1achep =
    new AbstractInput[ACHEP, O](this, 1) {
      override def processElement(element: StreamRecord[ACHEP]): Unit = {
        val achep: ACHEP = element.getValue
        val et = element.getTimestamp
        val key = getCurrentKey.asInstanceOf[K]
        collector.setAbsoluteTimestamp(et)
        ...
      }
    }

  val input2ceiep =
    new AbstractInput[CEIEP, O](this, 2) {
    ...
  }

  val input3v1ep =
    new AbstractInput[V1EP, O](this, 3) {
      ...
    }

  val input4amap =
    new AbstractInput[AMAP, O](this, 4) {
      ...
    }

  //implement getInputs(...) with all configured inputs
  override def getInputs: util.List[Input[_]] =
    util.List.of[Input[_]](input1achep, input2ceiep, input3v1ep, input4amap)
}

//implement the operator factory
class YourEnrichmentOperatorFactory
  extends AbstractStreamOperatorFactory[O]{
  override def createStreamOperator[T <: StreamOperator[O]](parameters: 
StreamOperatorParameters[O]): T = {
    val operator = new YourEnrichmentOperator(parameters)
    operator.asInstanceOf[T]
  }

  override def getStreamOperatorClass(classLoader: ClassLoader): Class[_ <: 
StreamOperator[_]] = {
    YourEnrichmentOperator.getClass.asInstanceOf[Class[StreamOperator[_]]]
  }
}

//implement job setup
...
  def setupJobFromInputs(achep: DataStream[ACHEP],
            ceiep: DataStream[CEIEP],
            v1ep: DataStream[V1EP],
            amap: DataStream[AMAP]) = {

    val par = your.parallelism
    val factory = new YourEnrichmentOperatorFactory
    val yourEnrichmentTransformation =
      new KeyedMultipleInputTransformation[O](
        "yourEnrichment",
        factory,
        oTI,
        par,
        kTI
      )

    val achepKS = new KeySelector[ACHEP, K] {
      override def getKey(value: ACHEP): K = value.yourId
    }
    yourEnrichmentTransformation.addInput(
      achep.javaStream
        .getTransformation(),
      achepKS
    )

    yourEnrichmentTransformation.addInput(
      ceiep.broadcast.javaStream.getTransformation,
      null
    )

    val v1epKS = new KeySelector[V1EP, K] {
      override def getKey(value: V1EP): K = value.cardHolderId
    }
    yourEnrichmentTransformation.addInput(
      v1ep
        .javaStream
        .getTransformation(),
      v1epKS
    )

    val amapKS = new KeySelector[AMAP, K] {
     override def getKey(value: AMAP): K = value.yourId
    }
    yourEnrichmentTransformation.addInput(
      amap
        .javaStream
        .getTransformation(),
      amapKS
    )

    val yourEnrichedStream =
      new DataStream[O](
        new MultipleConnectedStreams(env.getJavaEnv)
          .transform(yourEnrichmentTransformation)
      ).withScopedMetaData("yourEnriched")
    yourEnrichedStream
  }
...

I hope this helps.

Flink-Greetings
Thias


From: Christian Lorenz <christian.lor...@mapp.com>
Sent: Friday, August 9, 2024 2:07 PM
To: Schwalbe Matthias <matthias.schwa...@viseca.ch>; Sachin Mittal 
<sjmit...@gmail.com>; user@flink.apache.org
Subject: AW: Can we share states across tasks/operators

⚠EXTERNAL MESSAGE – CAUTION: Think Before You Click ⚠


Hi Matthias,

I am facing a similar issue with the need to have state on 2 keyed input 
streams, but the state can only be cleared with events occurring in a third 
input stream.
Do you have maybe some examples how to utilize MultipleInputStreamOperator you 
have mentioned?

Thanks and kind regards,
Christian

Von: Schwalbe Matthias 
<matthias.schwa...@viseca.ch<mailto:matthias.schwa...@viseca.ch>>
Datum: Mittwoch, 7. August 2024 um 12:54
An: Sachin Mittal <sjmit...@gmail.com<mailto:sjmit...@gmail.com>>, 
user@flink.apache.org<mailto:user@flink.apache.org> 
<user@flink.apache.org<mailto:user@flink.apache.org>>
Betreff: RE: Can we share states across tasks/operators
This email has reached Mapp via an external source

Hi Sachin,

Just as an idea, while you cannot easily share state across operators, you can 
do so within the same operator:

  *   For two such input streams you could connect() the two streams into a 
ConnectedStreams and then process() by means of a KeyedCoProcessFunction
  *   For more than two input streams, implement some 
MultipleInputStreamOperator …
  *   In both cases you can yield multiple independent output streams (if need 
be), by means of multiple side outputs (see here e.g. 
org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction.Context#output)

I do that all the time 😊

WDYT?

Sincere Flink greetings

Thias



From: Sachin Mittal <sjmit...@gmail.com<mailto:sjmit...@gmail.com>>
Sent: Wednesday, August 7, 2024 12:37 PM
To: user@flink.apache.org<mailto:user@flink.apache.org>
Subject: Can we share states across tasks/operators

Hi,
I have a stream which starts from a source and is keyed by a field f.
With the stream process function, I can emit the processed record downstream 
and also update state based on the records it received for the same key.

Now I have another stream which starts from another source and is of the same 
type as the first stream and it is also keyed by the same field f.

In its process function I want to access the last state updated by the first 
stream's process function for the same key, do some processing (update the 
state) and also send the record downstream.

Is there any way I can achieve this in Flink by connecting to the same state 
store ?

Is there any concept of global state in Flink if I cannot achieve this by using 
keyed states associated with an operator's process function ?

Any other way you can think of achieving the same ?

Thanks
Sachin

Diese Nachricht ist ausschliesslich für den Adressaten bestimmt und beinhaltet 
unter Umständen vertrauliche Mitteilungen. Da die Vertraulichkeit von 
e-Mail-Nachrichten nicht gewährleistet werden kann, übernehmen wir keine 
Haftung für die Gewährung der Vertraulichkeit und Unversehrtheit dieser 
Mitteilung. Bei irrtümlicher Zustellung bitten wir Sie um Benachrichtigung per 
e-Mail und um Löschung dieser Nachricht sowie eventueller Anhänge. Jegliche 
unberechtigte Verwendung oder Verbreitung dieser Informationen ist streng 
verboten.

This message is intended only for the named recipient and may contain 
confidential or privileged information. As the confidentiality of email 
communication cannot be guaranteed, we do not accept any responsibility for the 
confidentiality and the intactness of this message. If you have received it in 
error, please advise the sender by return e-mail and delete this message and 
any attachments. Any unauthorised use or dissemination of this information is 
strictly prohibited.
Mapp Digital Germany GmbH with registered offices at Schönhauser Allee 148, 
10435 Berlin.
Registered with the District Court München HRB 226181
Managing Directors: Frasier, Christopher & Warren, Steve
This e-mail is from Mapp Digital Group and its international legal entities and 
may contain information that is confidential.
If you are not the intended recipient, do not read, copy or distribute the 
e-mail or any attachments. Instead, please notify the sender and delete the 
e-mail and any attachments.
Diese Nachricht ist ausschliesslich für den Adressaten bestimmt und beinhaltet 
unter Umständen vertrauliche Mitteilungen. Da die Vertraulichkeit von 
e-Mail-Nachrichten nicht gewährleistet werden kann, übernehmen wir keine 
Haftung für die Gewährung der Vertraulichkeit und Unversehrtheit dieser 
Mitteilung. Bei irrtümlicher Zustellung bitten wir Sie um Benachrichtigung per 
e-Mail und um Löschung dieser Nachricht sowie eventueller Anhänge. Jegliche 
unberechtigte Verwendung oder Verbreitung dieser Informationen ist streng 
verboten.

This message is intended only for the named recipient and may contain 
confidential or privileged information. As the confidentiality of email 
communication cannot be guaranteed, we do not accept any responsibility for the 
confidentiality and the intactness of this message. If you have received it in 
error, please advise the sender by return e-mail and delete this message and 
any attachments. Any unauthorised use or dissemination of this information is 
strictly prohibited.

Reply via email to