Hi!

To simplify things you can generally look at TRUE_PROCESSING_RATE,
SCALUE_UP_RATE_THRESHOLD and SCALE_DOWN_RATE_THRESHOLD.
If TPR is below the scale up threshold then we should scale up and if its
above the scale down threshold then we scale down.

In your case what we see for your source (cbc357ccb763df2852fee8c4fc7d55f2)
as logged is that:

TPR: 17498
SCALE_UP_THRESHOLD: 83995

So it should definitely be scaled up in theory, however you can also see:
`Updating source cbc357ccb763df2852fee8c4fc7d55f2 max parallelism based on
available partitions to 1`

This means that the source max parallelism was determined by the available
kafka partitions to be 1. It would not make sense to increase the
parallelism even though we are clearly falling behind as the source cannot
consume a single partition in parallel.

Hope this helps
Gyula

On Fri, Jun 7, 2024 at 3:41 AM Chetas Joshi <chetas.jo...@gmail.com> wrote:

> Hi Community,
>
> I want to understand the following logs from the flink-k8s-operator
> autoscaler. My flink pipeline running on 1.18.0 and using
> flink-k8s-operator (1.8.0) is not scaling up even though the source vertex
> is back-pressured.
>
>
> 2024-06-06 21:33:35,270 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Updating source cbc357ccb763df2852fee8c4fc7d55f2 max parallelism based on
> available partitions to 1
>
> 2024-06-06 21:33:35,276 o.a.f.a.RestApiMetricsCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Querying metrics {busyTimeMsPerSecond=BUSY_TIME_PER_SEC,
> Source__dd-log-source.numRecordsOut=SOURCE_TASK_NUM_RECORDS_OUT,
> Source__dd-log-source.numRecordsIn=SOURCE_TASK_NUM_RECORDS_IN,
> Source__dd-log-source.pendingRecords=PENDING_RECORDS,
> Source__dd-log-source.numRecordsInPerSecond=SOURCE_TASK_NUM_RECORDS_IN_PER_SEC,
> backPressuredTimeMsPerSecond=BACKPRESSURE_TIME_PER_SEC} for
> cbc357ccb763df2852fee8c4fc7d55f2
>
> 2024-06-06 21:33:35,282 o.a.f.a.RestApiMetricsCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Querying metrics {busyTimeMsPerSecond=BUSY_TIME_PER_SEC} for
> 61214243927da46230dfd349fba7b8e6
>
> 2024-06-06 21:33:35,286 o.a.f.a.RestApiMetricsCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Querying metrics {busyTimeMsPerSecond=BUSY_TIME_PER_SEC} for
> 7758b2b5ada48872db09a5c48176e34e
>
> 2024-06-06 21:33:35,291 o.a.f.a.RestApiMetricsCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Querying metrics {busyTimeMsPerSecond=BUSY_TIME_PER_SEC} for
> eab9c0013081b8479e60463931f3a593
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Calculating vertex scaling metrics for cbc357ccb763df2852fee8c4fc7d55f2
> from
> {BACKPRESSURE_TIME_PER_SEC=AggregatedMetric{id='backPressuredTimeMsPerSecond',
> mim='0.0', max='0.0', avg='0.0', sum='0.0'},
> BUSY_TIME_PER_SEC=AggregatedMetric{id='busyTimeMsPerSecond', mim='192.0',
> max='192.0', avg='192.0', sum='192.0'},
> SOURCE_TASK_NUM_RECORDS_OUT=AggregatedMetric{id='Source__dd-log-source.numRecordsOut',
> mim='613279.0', max='613279.0', avg='613279.0', sum='613279.0'},
> PENDING_RECORDS=AggregatedMetric{id='Source__dd-log-source.pendingRecords',
> mim='0.0', max='0.0', avg='0.0', sum='0.0'},
> SOURCE_TASK_NUM_RECORDS_IN=AggregatedMetric{id='Source__dd-log-source.numRecordsIn',
> mim='613279.0', max='613279.0', avg='613279.0', sum='613279.0'},
> SOURCE_TASK_NUM_RECORDS_IN_PER_SEC=AggregatedMetric{id='Source__dd-log-source.numRecordsInPerSecond',
> mim='1682.7333333333333', max='1682.7333333333333',
> avg='1682.7333333333333', sum='1682.7333333333333'}}
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Vertex scaling metrics for cbc357ccb763df2852fee8c4fc7d55f2:
> {ACCUMULATED_BUSY_TIME=32301.0, NUM_RECORDS_OUT=125.0, LOAD=0.192,
> NUM_RECORDS_IN=613279.0, OBSERVED_TPR=Infinity, LAG=0.0}
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Calculating vertex scaling metrics for eab9c0013081b8479e60463931f3a593
> from {BUSY_TIME_PER_SEC=AggregatedMetric{id='busyTimeMsPerSecond',
> mim='0.0', max='0.0', avg='0.0', sum='0.0'}}
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Vertex scaling metrics for eab9c0013081b8479e60463931f3a593:
> {ACCUMULATED_BUSY_TIME=0.0, NUM_RECORDS_OUT=0.0, LOAD=0.0,
> NUM_RECORDS_IN=8.0}
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Calculating vertex scaling metrics for 61214243927da46230dfd349fba7b8e6
> from {BUSY_TIME_PER_SEC=AggregatedMetric{id='busyTimeMsPerSecond',
> mim='0.0', max='0.0', avg='0.0', sum='0.0'}}
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Vertex scaling metrics for 61214243927da46230dfd349fba7b8e6:
> {ACCUMULATED_BUSY_TIME=0.0, NUM_RECORDS_OUT=0.0, LOAD=0.0,
> NUM_RECORDS_IN=8.0}
>
> 2024-06-06 21:33:35,304 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Calculating vertex scaling metrics for 7758b2b5ada48872db09a5c48176e34e
> from {BUSY_TIME_PER_SEC=AggregatedMetric{id='busyTimeMsPerSecond',
> mim='0.0', max='0.0', avg='0.0', sum='0.0'}}
>
> 2024-06-06 21:33:35,305 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Vertex scaling metrics for 7758b2b5ada48872db09a5c48176e34e:
> {ACCUMULATED_BUSY_TIME=0.0, NUM_RECORDS_OUT=8.0, LOAD=0.0,
> NUM_RECORDS_IN=117.0}
>
> 2024-06-06 21:33:35,305 o.a.f.a.ScalingMetricCollector 
> [DEBUG][flink/pipeline-pipelinelocal]
> Global metrics: {NUM_TASK_SLOTS_USED=1.0,
> HEAP_MAX_USAGE_RATIO=0.6800108099126959, HEAP_MEMORY_USED=4.74886648E8,
> METASPACE_MEMORY_USED=1.40677456E8, MANAGED_MEMORY_USED=0.0}
>
> 2024-06-06 21:33:35,306 o.a.f.a.ScalingTracking        
> [DEBUG][flink/pipeline-pipelinelocal]
> Cannot record restart duration because already set in the latest record:
> PT0.114185S
>
> 2024-06-06 21:33:35,307 o.a.f.a.JobAutoScalerImpl      
> [DEBUG][flink/pipeline-pipelinelocal]
> Collected metrics:
> CollectedMetricHistory(jobTopology=JobTopology(vertexInfos={cbc357ccb763df2852fee8c4fc7d55f2=VertexInfo(id=cbc357ccb763df2852fee8c4fc7d55f2,
> inputs={}, outputs={61214243927da46230dfd349fba7b8e6=REBALANCE,
> 7758b2b5ada48872db09a5c48176e34e=HASH}, parallelism=1, maxParallelism=1,
> originalMaxParallelism=20, finished=false,
> ioMetrics=IOMetrics(numRecordsIn=0, numRecordsOut=125,
> accumulatedBusyTime=32301.0)),
> eab9c0013081b8479e60463931f3a593=VertexInfo(id=eab9c0013081b8479e60463931f3a593,
> inputs={7758b2b5ada48872db09a5c48176e34e=REBALANCE}, outputs={},
> parallelism=1, maxParallelism=1, originalMaxParallelism=1, finished=false,
> ioMetrics=IOMetrics(numRecordsIn=8, numRecordsOut=0,
> accumulatedBusyTime=0.0)),
> 61214243927da46230dfd349fba7b8e6=VertexInfo(id=61214243927da46230dfd349fba7b8e6,
> inputs={cbc357ccb763df2852fee8c4fc7d55f2=REBALANCE}, outputs={},
> parallelism=1, maxParallelism=1, originalMaxParallelism=1, finished=false,
> ioMetrics=IOMetrics(numRecordsIn=8, numRecordsOut=0,
> accumulatedBusyTime=0.0)),
> 7758b2b5ada48872db09a5c48176e34e=VertexInfo(id=7758b2b5ada48872db09a5c48176e34e,
> inputs={cbc357ccb763df2852fee8c4fc7d55f2=HASH},
> outputs={eab9c0013081b8479e60463931f3a593=REBALANCE}, parallelism=1,
> maxParallelism=20, originalMaxParallelism=20, finished=false,
> ioMetrics=IOMetrics(numRecordsIn=117, numRecordsOut=8,
> accumulatedBusyTime=0.0))}, finishedVertices=[],
> verticesInTopologicalOrder=[cbc357ccb763df2852fee8c4fc7d55f2,
> 61214243927da46230dfd349fba7b8e6, 7758b2b5ada48872db09a5c48176e34e,
> eab9c0013081b8479e60463931f3a593]),
> metricHistory={2024-06-06T21:32:35.170678Z=CollectedMetrics(vertexMetrics={cbc357ccb763df2852fee8c4fc7d55f2={ACCUMULATED_BUSY_TIME=20821.0,
> NUM_RECORDS_OUT=109.0, LOAD=0.0, NUM_RECORDS_IN=512339.0,
> OBSERVED_TPR=Infinity, LAG=0.0},
> eab9c0013081b8479e60463931f3a593={ACCUMULATED_BUSY_TIME=0.0,
> NUM_RECORDS_OUT=0.0, LOAD=0.0, NUM_RECORDS_IN=7.0},
> 61214243927da46230dfd349fba7b8e6={ACCUMULATED_BUSY_TIME=0.0,
> NUM_RECORDS_OUT=0.0, LOAD=0.0, NUM_RECORDS_IN=7.0},
> 7758b2b5ada48872db09a5c48176e34e={ACCUMULATED_BUSY_TIME=0.0,
> NUM_RECORDS_OUT=7.0, LOAD=0.0, NUM_RECORDS_IN=102.0}},
> globalMetrics={NUM_TASK_SLOTS_USED=1.0,
> HEAP_MAX_USAGE_RATIO=0.5849425971687019, HEAP_MEMORY_USED=4.08495608E8,
> METASPACE_MEMORY_USED=1.43093792E8, MANAGED_MEMORY_USED=0.0}),
> 2024-06-06T21:33:35.258489Z=CollectedMetrics(vertexMetrics={cbc357ccb763df2852fee8c4fc7d55f2={ACCUMULATED_BUSY_TIME=32301.0,
> NUM_RECORDS_OUT=125.0, LOAD=0.192, NUM_RECORDS_IN=613279.0,
> OBSERVED_TPR=Infinity, LAG=0.0},
> eab9c0013081b8479e60463931f3a593={ACCUMULATED_BUSY_TIME=0.0,
> NUM_RECORDS_OUT=0.0, LOAD=0.0, NUM_RECORDS_IN=8.0},
> 61214243927da46230dfd349fba7b8e6={ACCUMULATED_BUSY_TIME=0.0,
> NUM_RECORDS_OUT=0.0, LOAD=0.0, NUM_RECORDS_IN=8.0},
> 7758b2b5ada48872db09a5c48176e34e={ACCUMULATED_BUSY_TIME=0.0,
> NUM_RECORDS_OUT=8.0, LOAD=0.0, NUM_RECORDS_IN=117.0}},
> globalMetrics={NUM_TASK_SLOTS_USED=1.0,
> HEAP_MAX_USAGE_RATIO=0.6800108099126959, HEAP_MEMORY_USED=4.74886648E8,
> METASPACE_MEMORY_USED=1.40677456E8, MANAGED_MEMORY_USED=0.0})},
> jobRunningTs=2024-06-06T21:17:35.712Z, fullyCollected=true)
>
> 2024-06-06 21:33:35,307 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Restart time used in metrics evaluation: PT5M
>
> 2024-06-06 21:33:35,307 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Using busy time based tpr 17498.932104004747 for
> cbc357ccb763df2852fee8c4fc7d55f2.
>
> 2024-06-06 21:33:35,307 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Computing edge (cbc357ccb763df2852fee8c4fc7d55f2,
> 61214243927da46230dfd349fba7b8e6) data rate for single input downstream task
>
> 2024-06-06 21:33:35,307 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Computed output ratio for edge (cbc357ccb763df2852fee8c4fc7d55f2 ->
> 61214243927da46230dfd349fba7b8e6) : 9.906875371507826E-6
>
> 2024-06-06 21:33:35,308 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Computing edge (cbc357ccb763df2852fee8c4fc7d55f2,
> 7758b2b5ada48872db09a5c48176e34e) data rate for single input downstream task
>
> 2024-06-06 21:33:35,308 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Computed output ratio for edge (cbc357ccb763df2852fee8c4fc7d55f2 ->
> 7758b2b5ada48872db09a5c48176e34e) : 1.486031305726174E-4
>
> 2024-06-06 21:33:35,308 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Computing edge (7758b2b5ada48872db09a5c48176e34e,
> eab9c0013081b8479e60463931f3a593) data rate for single input downstream task
>
> 2024-06-06 21:33:35,308 o.a.f.a.ScalingMetricEvaluator 
> [DEBUG][flink/pipeline-pipelinelocal]
> Computed output ratio for edge (7758b2b5ada48872db09a5c48176e34e ->
> eab9c0013081b8479e60463931f3a593) : 0.06666666666666667
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobAutoScalerImpl      
> [DEBUG][flink/pipeline-pipelinelocal]
> Evaluated metrics:
> EvaluatedMetrics(vertexMetrics={cbc357ccb763df2852fee8c4fc7d55f2={TARGET_DATA_RATE=EvaluatedScalingMetric(current=NaN,
> average=1679.897), PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN),
> SCALE_UP_RATE_THRESHOLD=EvaluatedScalingMetric(current=83995.0,
> average=NaN), MAX_PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN), TRUE_PROCESSING_RATE=EvaluatedScalingMetric(current=NaN,
> average=17498.932), LOAD=EvaluatedScalingMetric(current=NaN,
> average=0.096),
> SCALE_DOWN_RATE_THRESHOLD=EvaluatedScalingMetric(current=Infinity,
> average=NaN), CATCH_UP_DATA_RATE=EvaluatedScalingMetric(current=0.0,
> average=NaN), LAG=EvaluatedScalingMetric(current=0.0, average=NaN)},
> eab9c0013081b8479e60463931f3a593={TARGET_DATA_RATE=EvaluatedScalingMetric(current=NaN,
> average=0.017), PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN), SCALE_UP_RATE_THRESHOLD=EvaluatedScalingMetric(current=1.0,
> average=NaN), MAX_PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN), TRUE_PROCESSING_RATE=EvaluatedScalingMetric(current=NaN,
> average=Infinity), LOAD=EvaluatedScalingMetric(current=NaN, average=0.0),
> SCALE_DOWN_RATE_THRESHOLD=EvaluatedScalingMetric(current=Infinity,
> average=NaN), CATCH_UP_DATA_RATE=EvaluatedScalingMetric(current=0.0,
> average=NaN)},
> 61214243927da46230dfd349fba7b8e6={TARGET_DATA_RATE=EvaluatedScalingMetric(current=NaN,
> average=0.017), PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN), SCALE_UP_RATE_THRESHOLD=EvaluatedScalingMetric(current=1.0,
> average=NaN), MAX_PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN), TRUE_PROCESSING_RATE=EvaluatedScalingMetric(current=NaN,
> average=Infinity), LOAD=EvaluatedScalingMetric(current=NaN, average=0.0),
> SCALE_DOWN_RATE_THRESHOLD=EvaluatedScalingMetric(current=Infinity,
> average=NaN), CATCH_UP_DATA_RATE=EvaluatedScalingMetric(current=0.0,
> average=NaN)},
> 7758b2b5ada48872db09a5c48176e34e={TARGET_DATA_RATE=EvaluatedScalingMetric(current=NaN,
> average=0.25), PARALLELISM=EvaluatedScalingMetric(current=1.0,
> average=NaN), SCALE_UP_RATE_THRESHOLD=EvaluatedScalingMetric(current=13.0,
> average=NaN), MAX_PARALLELISM=EvaluatedScalingMetric(current=20.0,
> average=NaN), TRUE_PROCESSING_RATE=EvaluatedScalingMetric(current=NaN,
> average=Infinity), LOAD=EvaluatedScalingMetric(current=NaN, average=0.0),
> SCALE_DOWN_RATE_THRESHOLD=EvaluatedScalingMetric(current=Infinity,
> average=NaN), CATCH_UP_DATA_RATE=EvaluatedScalingMetric(current=0.0,
> average=NaN)}},
> globalMetrics={HEAP_MAX_USAGE_RATIO=EvaluatedScalingMetric(current=0.68,
> average=0.632), NUM_TASK_SLOTS_USED=EvaluatedScalingMetric(current=1.0,
> average=NaN), GC_PRESSURE=EvaluatedScalingMetric(current=NaN, average=NaN),
> HEAP_MEMORY_USED=EvaluatedScalingMetric(current=4.74886648E8,
> average=4.41691128E8),
> METASPACE_MEMORY_USED=EvaluatedScalingMetric(current=1.40677456E8,
> average=1.41885624E8),
> MANAGED_MEMORY_USED=EvaluatedScalingMetric(current=0.0, average=0.0)})
>
> 2024-06-06 21:33:35,308 o.a.f.a.ScalingExecutor        
> [DEBUG][flink/pipeline-pipelinelocal]
> Restart time used in scaling summary computation: PT5M
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Target processing capacity for cbc357ccb763df2852fee8c4fc7d55f2 is 168270.0
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Capped target processing capacity for cbc357ccb763df2852fee8c4fc7d55f2 is
> 168270.0
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Specified autoscaler maximum parallelism 200 is greater than the operator
> max parallelism 1. This means the operator max parallelism can never be
> reached.
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Target processing capacity for eab9c0013081b8479e60463931f3a593 is 2.0
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Computed scale factor of 0.0 for eab9c0013081b8479e60463931f3a593 is capped
> by maximum scale down factor to 0.4
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Capped target processing capacity for eab9c0013081b8479e60463931f3a593 is
> Infinity
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Specified autoscaler maximum parallelism 200 is greater than the operator
> max parallelism 1. This means the operator max parallelism can never be
> reached.
>
> 2024-06-06 21:33:35,308 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Target processing capacity for 61214243927da46230dfd349fba7b8e6 is 2.0
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Computed scale factor of 0.0 for 61214243927da46230dfd349fba7b8e6 is capped
> by maximum scale down factor to 0.4
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Capped target processing capacity for 61214243927da46230dfd349fba7b8e6 is
> Infinity
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Specified autoscaler maximum parallelism 200 is greater than the operator
> max parallelism 1. This means the operator max parallelism can never be
> reached.
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Target processing capacity for 7758b2b5ada48872db09a5c48176e34e is 25.0
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Computed scale factor of 0.0 for 7758b2b5ada48872db09a5c48176e34e is capped
> by maximum scale down factor to 0.4
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Capped target processing capacity for 7758b2b5ada48872db09a5c48176e34e is
> Infinity
>
> 2024-06-06 21:33:35,309 o.a.f.a.JobVertexScaler        
> [DEBUG][flink/pipeline-pipelinelocal]
> Specified autoscaler maximum parallelism 200 is greater than the operator
> max parallelism 20. This means the operator max parallelism can never be
> reached.
>
> 2024-06-06 21:33:35,309 o.a.f.a.ScalingExecutor        [INFO ][flink/
> pipeline-pipelinelocal] All job vertices are currently running at their
> target parallelism.
>
>
> Some Questions
>
> 1. Does the autoscaler decide to scale a job vertex when the target
> processing capacity is higher than the current processing capacity? If yes,
> how to check the current processing capacity?
>
> 2. Which metrics in the above logs say the target utilization threshold is
> not reached and hence all the vertices are running at target parallelism?
>
>
> Thank you
> Chetas
>
>

Reply via email to