Hi

Agree with @yuxia, you should do the operation of lambda function in your
own udf

Best,
Shammon


On Wed, Feb 22, 2023 at 10:32 AM yuxia <luoyu...@alumni.sjtu.edu.cn> wrote:

> May be you can try with a non-lambda function.
> But TBH, I haven't seen any Flink UDF that accepts function as parameter
> in my previous experience. I'm afraid that it's no allowed to pass a
> function as parameter.
>
> Best regards,
> Yuxia
>
> ------------------------------
> *发件人: *"Xuekui" <baixue...@foxmail.com>
> *收件人: *"yuxia" <luoyu...@alumni.sjtu.edu.cn>
> *抄送: *"fskmine" <fskm...@gmail.com>, "Caizhi Weng" <tsreape...@gmail.com>,
> "User" <user@flink.apache.org>
> *发送时间: *星期二, 2023年 2 月 21日 上午 11:25:48
> *主题: *Re:Re: Flink SQL support array transform function
>
> Hi YuXia,
>
> Thanks for your advice.
>
> By adding the hint, the type validation can pass.
> But still I can't pass the function to this udf
> Here is my query
>
> select array_transform(ids, id -> id +1) from tmp_table
>
> The lambda function  id -> id +1 can't be passed because "->" is not
> supported in calcite now.
>
> Exception in thread "main" org.apache.flink.table.api.SqlParserException:
> SQL parse failed. Encountered "- >" at line 3, column 40.
> at
> org.apache.flink.table.planner.calcite.CalciteParser.parse(CalciteParser.java:56)
> at
> org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:74)
> at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.executeSql(TableEnvironmentImpl.java:660)
>
>
>
>
>
>
> Original Email
>
> Sender:"yuxia"< luoyu...@alumni.sjtu.edu.cn >;
>
> Sent Time:2023/2/20 10:00
>
> To:"Xuekui"< baixue...@foxmail.com >;
>
> Cc recipient:"fskmine"< fskm...@gmail.com >;"Caizhi Weng"<
> tsreape...@gmail.com >;"User"< user@flink.apache.org >;
>
> Subject:Re: Flink SQL support array transform function
>
> Hi, Xuekui.
> As said in the exception stack,  may be you can try to provide hint for
> the function's parameters.
>
>
> class ArrayTransformFunction extends ScalarFunction {
>
>  def eval(@DataTypeHint("ARRAY<BIGINT>") a: Array[Long],
>  @DataTypeHint("RAW") function: Long => Long): Array[Long] = {
>  a.map(e => function(e))
>  }
>
> }
> Hope it can help.
> For more detail, please refer to Flink doc[1]
>
> [1]:https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/functions/udfs/#type-inference
>
>
>
> Best regards,
> Yuxia
>
> ------------------------------
> *发件人: *"Xuekui" <baixue...@foxmail.com>
> *收件人: *"fskmine" <fskm...@gmail.com>, "Caizhi Weng" <tsreape...@gmail.com>
> *抄送: *"User" <user@flink.apache.org>
> *发送时间: *星期四, 2023年 2 月 16日 上午 10:54:05
> *主题: *Re:  Flink SQL support array transform function
>
> Hi Caizhi,
>
> I've tried to write UDF to support this function, but I found I can't pass
> the function parameter to udf because the data type of function is not
> supported. An exception throws in SQL validation.
>
> My UDF code:
>
> class ArrayTransformFunction extends ScalarFunction {
>
>   def eval(a: Array[Long], function: Long => Long): Array[Long] = {
>     a.map(e => function(e))
>   }
>
> }
>
>
> Exception:
>
> Exception in thread "main" org.apache.flink.table.api.ValidationException: 
> SQL validation failed. An error occurred in the type inference logic of 
> function 'transform'.
>       at 
> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.org$apache$flink$table$planner$calcite$FlinkPlannerImpl$$validate(FlinkPlannerImpl.scala:152)
>       at 
> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.validate(FlinkPlannerImpl.scala:111)
>       at 
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:189)
>       at 
> org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:77)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.executeSql(TableEnvironmentImpl.java:660)
>       at SQLTest$.main(SQLTest.scala:44)
>       at SQLTest.main(SQLTest.scala)
> Caused by: org.apache.flink.table.api.ValidationException: An error occurred 
> in the type inference logic of function 'transform'.
>       at 
> org.apache.flink.table.planner.catalog.FunctionCatalogOperatorTable.convertToBridgingSqlFunction(FunctionCatalogOperatorTable.java:163)
>       at 
> org.apache.flink.table.planner.catalog.FunctionCatalogOperatorTable.convertToSqlFunction(FunctionCatalogOperatorTable.java:146)
>       at 
> org.apache.flink.table.planner.catalog.FunctionCatalogOperatorTable.lambda$lookupOperatorOverloads$0(FunctionCatalogOperatorTable.java:100)
>       at java.util.Optional.flatMap(Optional.java:241)
>       at 
> org.apache.flink.table.planner.catalog.FunctionCatalogOperatorTable.lookupOperatorOverloads(FunctionCatalogOperatorTable.java:98)
>       at 
> org.apache.calcite.sql.util.ChainedSqlOperatorTable.lookupOperatorOverloads(ChainedSqlOperatorTable.java:67)
>       at 
> org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1260)
>       at 
> org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1275)
>       at 
> org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1245)
>       at 
> org.apache.calcite.sql.validate.SqlValidatorImpl.validateScopedExpression(SqlValidatorImpl.java:1009)
>       at 
> org.apache.calcite.sql.validate.SqlValidatorImpl.validate(SqlValidatorImpl.java:724)
>       at 
> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.org$apache$flink$table$planner$calcite$FlinkPlannerImpl$$validate(FlinkPlannerImpl.scala:147)
>       ... 6 more
> Caused by: org.apache.flink.table.api.ValidationException: Could not extract 
> a valid type inference for function class 'udf.ArrayTransformFunction'. 
> Please check for implementation mistakes and/or provide a corresponding hint.
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:333)
>       at 
> org.apache.flink.table.types.extraction.TypeInferenceExtractor.extractTypeInference(TypeInferenceExtractor.java:150)
>       at 
> org.apache.flink.table.types.extraction.TypeInferenceExtractor.forScalarFunction(TypeInferenceExtractor.java:83)
>       at 
> org.apache.flink.table.functions.ScalarFunction.getTypeInference(ScalarFunction.java:143)
>       at 
> org.apache.flink.table.planner.catalog.FunctionCatalogOperatorTable.convertToBridgingSqlFunction(FunctionCatalogOperatorTable.java:160)
>       ... 17 more
> Caused by: org.apache.flink.table.api.ValidationException: Error in 
> extracting a signature to output mapping.
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:333)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.extractOutputMapping(FunctionMappingExtractor.java:117)
>       at 
> org.apache.flink.table.types.extraction.TypeInferenceExtractor.extractTypeInferenceOrError(TypeInferenceExtractor.java:161)
>       at 
> org.apache.flink.table.types.extraction.TypeInferenceExtractor.extractTypeInference(TypeInferenceExtractor.java:148)
>       ... 20 more
> Caused by: org.apache.flink.table.api.ValidationException: Unable to extract 
> a type inference from method:
> public long[] udf.ArrayTransformFunction.eval(long[],scala.Function1)
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:333)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.extractResultMappings(FunctionMappingExtractor.java:183)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.extractOutputMapping(FunctionMappingExtractor.java:114)
>       ... 22 more
> Caused by: org.apache.flink.table.api.ValidationException: Could not extract 
> a data type from 'scala.Function1<java.lang.Object, java.lang.Object>' in 
> parameter 1 of method 'eval' in class 'udf.ArrayTransformFunction'. Please 
> pass the required data type manually or allow RAW types.
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:333)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractDataTypeOrRawWithTemplate(DataTypeExtractor.java:220)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractDataTypeOrRaw(DataTypeExtractor.java:198)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractDataTypeWithClassContext(DataTypeExtractor.java:174)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractFromMethodParameter(DataTypeExtractor.java:128)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.extractDataTypeArgument(FunctionMappingExtractor.java:409)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.lambda$null$10(FunctionMappingExtractor.java:385)
>       at java.util.Optional.orElseGet(Optional.java:267)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.lambda$extractArgumentTemplates$11(FunctionMappingExtractor.java:383)
>       at java.util.stream.IntPipeline$4$1.accept(IntPipeline.java:250)
>       at 
> java.util.stream.Streams$RangeIntSpliterator.forEachRemaining(Streams.java:110)
>       at java.util.Spliterator$OfInt.forEachRemaining(Spliterator.java:693)
>       at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:482)
>       at 
> java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:472)
>       at 
> java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708)
>       at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234)
>       at 
> java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:499)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.extractArgumentTemplates(FunctionMappingExtractor.java:387)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.lambda$createParameterSignatureExtraction$9(FunctionMappingExtractor.java:364)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.putExtractedResultMappings(FunctionMappingExtractor.java:324)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.collectMethodMappings(FunctionMappingExtractor.java:269)
>       at 
> org.apache.flink.table.types.extraction.FunctionMappingExtractor.extractResultMappings(FunctionMappingExtractor.java:169)
>       ... 23 more
> Caused by: org.apache.flink.table.api.ValidationException: Could not extract 
> a data type from 'scala.Function1<java.lang.Object, java.lang.Object>'. 
> Interpreting it as a structured type was also not successful.
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:333)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractDataTypeOrError(DataTypeExtractor.java:270)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractDataTypeOrRawWithTemplate(DataTypeExtractor.java:212)
>       ... 43 more
> Caused by: org.apache.flink.table.api.ValidationException: Class 
> 'scala.Function1' must not be abstract.
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:333)
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.extractionError(ExtractionUtils.java:328)
>       at 
> org.apache.flink.table.types.extraction.ExtractionUtils.validateStructuredClass(ExtractionUtils.java:162)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractStructuredType(DataTypeExtractor.java:453)
>       at 
> org.apache.flink.table.types.extraction.DataTypeExtractor.extractDataTypeOrError(DataTypeExtractor.java:268)
>       ... 44 more
>
> Do you have any advice on this udf?
>
> Thanks
>
>
> ------------------ Original ------------------
> *From: * "Shengkai Fang";<fskm...@gmail.com>;
> *Send time:* Tuesday, Aug 3, 2021 8:51 PM
> *To:* "Caizhi Weng"<tsreape...@gmail.com>;
> *Cc:* "Xuekui"<baixue...@foxmail.com>; "user"<user@flink.apache.org>;
> *Subject: * Re: Flink SQL support array transform function
>
> Hi, Caizhi. Do you think we should support this? Maybe we can open a jira
> for this or to align with the spark to support more useful built-in
> functions.
>
>
> Caizhi Weng <tsreape...@gmail.com> 于2021年8月3日周二 下午3:42写道:
>
>> Hi!
>> Currently there is no such built-in function in Flink SQL. You can try to
>> write your own user-defined function[1] to achieve this.
>>
>> [1]
>> https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/table/functions/udfs/
>>
>> Xuekui <baixue...@foxmail.com> 于2021年8月3日周二 下午3:22写道:
>>
>>> Hi,
>>>
>>> I'm using Flink SQL and need to do some transformation for one array
>>> column, just like spark sql transform function.
>>> https://spark.apache.org/docs/latest/api/sql/index.html#transform
>>>
>>> I found it's not supported by Flink SQL , is there any plan for it?
>>>
>>>
>>> Thank you
>>>
>>>
>
>

Reply via email to