I guess you only need file:///{os.getcwd()}/lib/flink-sql-avro-1.12.2.jar <file:///%7Bos.getcwd()%7D/lib/flink-sql-avro-1.12.2.jar>. Could you remove flink-avro-1.12.2.jar and avro-1.10.2.jar and try again?
Regards, Dian > 2021年4月24日 上午8:29,Edward Yang <eddiepy...@gmail.com> 写道: > > I've been trying to write to the avro format with pyflink 1.12.2 on ubuntu, > I've tested my code with an iterator writing to csv and everything works as > expected. Reading through the flink documentation I see that I should add jar > dependencies to work with avro. I downloaded three jar files that I believe > are required for avro like so: > > table_env\ > .get_config()\ > .get_configuration()\ > .set_string( > "pipeline.jars", > > rf"file:///{os.getcwd()}/lib/flink-sql-avro-1.12.2.jar;file:///{os.getcwd()}/lib/flink-avro-1.12.2.jar;file:///{os.getcwd()}/lib/avro-1.10.2.jar" > ) > > I suspect I'm not loading the jar files correctly, but it's unclear what I'm > supposed to do as I'm not familiar with java and when I switch the sink > format to avro I get some unexpected errors: > Py4JJavaError: An error occurred while calling o746.executeInsert. > : java.lang.NoClassDefFoundError: org/apache/avro/io/DatumWriter > at > org.apache.flink.formats.avro.AvroFileFormatFactory$1.createRuntimeEncoder(AvroFileFormatFactory.java:71) > at > org.apache.flink.formats.avro.AvroFileFormatFactory$1.createRuntimeEncoder(AvroFileFormatFactory.java:61) > at > org.apache.flink.table.filesystem.FileSystemTableSink.createWriter(FileSystemTableSink.java:373) > at > org.apache.flink.table.filesystem.FileSystemTableSink.createOutputFormatFactory(FileSystemTableSink.java:365) > at > org.apache.flink.table.filesystem.FileSystemTableSink.createBatchSink(FileSystemTableSink.java:163) > at > org.apache.flink.table.filesystem.FileSystemTableSink.consume(FileSystemTableSink.java:139) > at > org.apache.flink.table.filesystem.FileSystemTableSink.lambda$getSinkRuntimeProvider$0(FileSystemTableSink.java:134) > at > org.apache.flink.table.planner.plan.nodes.common.CommonPhysicalSink.createSinkTransformation(CommonPhysicalSink.scala:95) > at > org.apache.flink.table.planner.plan.nodes.physical.batch.BatchExecSink.translateToPlanInternal(BatchExecSink.scala:87) > at > org.apache.flink.table.planner.plan.nodes.physical.batch.BatchExecSink.translateToPlanInternal(BatchExecSink.scala:42) > at > org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:59) > at > org.apache.flink.table.planner.plan.nodes.physical.batch.BatchExecSink.translateToPlan(BatchExecSink.scala:42) > at > org.apache.flink.table.planner.delegation.BatchPlanner$$anonfun$translateToPlan$1.apply(BatchPlanner.scala:86) > at > org.apache.flink.table.planner.delegation.BatchPlanner$$anonfun$translateToPlan$1.apply(BatchPlanner.scala:85) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at scala.collection.Iterator$class.foreach(Iterator.scala:891) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1334) > at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > at scala.collection.AbstractIterable.foreach(Iterable.scala:54) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.flink.table.planner.delegation.BatchPlanner.translateToPlan(BatchPlanner.scala:85) > at > org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:162) > at > org.apache.flink.table.api.internal.TableEnvironmentImpl.translate(TableEnvironmentImpl.java:1329) > at > org.apache.flink.table.api.internal.TableEnvironmentImpl.executeInternal(TableEnvironmentImpl.java:676) > at > org.apache.flink.table.api.internal.TableImpl.executeInsert(TableImpl.java:572) > at > java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.base/java.lang.reflect.Method.invoke(Method.java:566) > at > org.apache.flink.api.python.shaded.py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at > org.apache.flink.api.python.shaded.py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at > org.apache.flink.api.python.shaded.py4j.Gateway.invoke(Gateway.java:282) > at > org.apache.flink.api.python.shaded.py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at > org.apache.flink.api.python.shaded.py4j.commands.CallCommand.execute(CallCommand.java:79) > at > org.apache.flink.api.python.shaded.py4j.GatewayConnection.run(GatewayConnection.java:238) > at java.base/java.lang.Thread.run(Thread.java:834) > Caused by: java.lang.ClassNotFoundException: org.apache.avro.io.DatumWriter > at > java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.java:581) > at > java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.java:178) > at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:522) > > My sample code as follows: > > from pyflink.dataset import ExecutionEnvironment > from pyflink.table import TableConfig, DataTypes, BatchTableEnvironment, > EnvironmentSettings > > env_settings = > EnvironmentSettings.new_instance().in_batch_mode().use_blink_planner().build() > table_env = BatchTableEnvironment.create(environment_settings=env_settings) > > table_env\ > .get_config()\ > .get_configuration()\ > .set_string( > "pipeline.jars", > > rf"file:///{os.getcwd()}/lib/flink-sql-avro-1.12.2.jar;file:///{os.getcwd()}/lib/flink-avro-1.12.2.jar;file:///{os.getcwd()}/lib/avro-1.10.2.jar" > ) > > table = table_env.from_elements( > a, > schema=DataTypes.ROW([ > DataTypes.FIELD('text', DataTypes.STRING()), > DataTypes.FIELD('text1', DataTypes.STRING()) > ]) > ) > sink_ddl = f""" > create table Results( > a STRING, > b STRING > ) with ( > 'connector' = 'filesystem', > 'path' = '{result_path}', > 'format' = 'avro' > ) > """ > > table_env.execute_sql(sink_ddl) > table.execute_insert("Results").wait() > > Could someone help or point me in the right direction to look?