Hi Yik,
if I understand you correctly you would like to avoid the deletions in
your stream?
You could filter the deletions manually in DataStream API before writing
them to Kafka. Semantically the deletions are required to produce a
correct result because the runtime is not aware of a key for idempotent
updates.
To simplify the query you could also investigate to implement your own
aggregate function and combine the Top 2 and ListAgg into one operation.
Regards,
Timo
On 28.02.21 09:55, Yik San Chan wrote:
I define a `Transaction` class:
```scala
case class Transaction(accountId: Long, amount: Long, timestamp: Long)
```
The `TransactionSource` simply emits `Transaction` with some time
interval. Now I want to compute the last 2 transaction timestamp of each
account id, see code below:
```scala
import org.apache.flink.streaming.api.scala.{DataStream,
StreamExecutionEnvironment, _}
import org.apache.flink.table.api.EnvironmentSettings
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.walkthrough.common.entity.Transaction
import org.apache.flink.walkthrough.common.source.TransactionSource
object LastNJob {
final val QUERY =
"""
|WITH last_n AS (
| SELECT accountId, `timestamp`
| FROM (
| SELECT *,
| ROW_NUMBER() OVER (PARTITION BY accountId ORDER BY
`timestamp` DESC) AS row_num
| FROM transactions
| )
| WHERE row_num <= 2
|)
|SELECT accountId, LISTAGG(CAST(`timestamp` AS STRING))
last2_timestamp
|FROM last_n
|GROUP BY accountId
|""".stripMargin
def main(args: Array[String]): Unit = {
val settings: EnvironmentSettings =
EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build()
val streamEnv: StreamExecutionEnvironment =
StreamExecutionEnvironment.getExecutionEnvironment
val tableEnv: StreamTableEnvironment =
StreamTableEnvironment.create(streamEnv, settings)
val txnStream: DataStream[Transaction] = streamEnv
.addSource(new TransactionSource)
.name("transactions")
tableEnv.createTemporaryView("transactions", txnStream)
tableEnv.executeSql(QUERY).print()
}
}
```
When I run the program, I get:
```
+----+----------------------+--------------------------------+
| op | accountId | last2_timestamp |
+----+----------------------+--------------------------------+
| +I | 1 | 1546272000000 |
| +I | 2 | 1546272360000 |
| +I | 3 | 1546272720000 |
| +I | 4 | 1546273080000 |
| +I | 5 | 1546273440000 |
| -U | 1 | 1546272000000 |
| +U | 1 | 1546272000000,1546273800000 |
| -U | 2 | 1546272360000 |
| +U | 2 | 1546272360000,1546274160000 |
| -U | 3 | 1546272720000 |
| +U | 3 | 1546272720000,1546274520000 |
| -U | 4 | 1546273080000 |
| +U | 4 | 1546273080000,1546274880000 |
| -U | 5 | 1546273440000 |
| +U | 5 | 1546273440000,1546275240000 |
| -U | 1 | 1546272000000,1546273800000 |
| +U | 1 | 1546273800000 |
| -U | 1 | 1546273800000 |
| +U | 1 | 1546273800000,1546275600000 |
(to continue)
```
Let's focus on the last transaction (from above) of accountId=1. When
there is a new transaction from account 1 that happens at
timestamp=1546275600000, there are 4 operations in total.
```
+----+----------------------+--------------------------------+
| op | accountId | last2_timestamp |
+----+----------------------+--------------------------------+
| -U | 1 | 1546272000000,1546273800000 |
| +U | 1 | 1546273800000 |
| -U | 1 | 1546273800000 |
| +U | 1 | 1546273800000,1546275600000 |
```
While I only want to emit the below "new status" to my downstream (let's
say another Kafka topic) via some sort of merging:
```
+----------------------+--------------------------------+
| accountId | last2_timestamp |
+----------------------+--------------------------------+
| 1 | 1546273800000,1546275600000 |
```
So that my downstream is able to consume literally "the last 2
transaction timestamps of each account":
```
+----------------------+--------------------------------+
| accountId | last2_timestamp |
+----------------------+--------------------------------+
| 1 | 1546272000000 |
| 1 | 1546272000000,1546273800000 |
| 1 | 1546273800000,1546275600000 |
(to continue)
```
What is the right way to do this?