Hi All,Avro was finally bumped in https://issues.apache.org/jira/browse/FLINK-18192.
The implementers didn't see https://issues.apache.org/jira/browse/FLINK-12532, but it is also updated now.
Best, Aljoscha On 21.09.20 08:04, Arvid Heise wrote:
Hi Lian, we had a similar discussion on [1]. TL;DR you are using Avro 1.9.x while Flink still bundles Avro 1.8 [2] until Hive bumps it [3]. In the thread, I gave some options to avoid running into the issue. The easiest fix is to use Avro 1.8.2 all the way, but you may run into [4] if your logical type is nullable (which is not necessary in most cases). Still, I think it's time for us to revise the decision to wait for Hive to bump and rather upgrade independently. Avro was for a long time stuck on 1.8 but the project gained traction again in the past two years. On the other hand, Hive seems to be rather slow to respond to that and we shouldn't have a slow moving component block us to support a fast moving component if it's such apparent that users want it. @Aljoscha Krettek <aljos...@apache.org> could you please pick that topic up and ping the respective maintainers? [1] http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Reading-from-AVRO-files-td35850.html [2] https://issues.apache.org/jira/browse/FLINK-12532 [3] https://issues.apache.org/jira/browse/HIVE-21737 [4] https://issues.apache.org/jira/browse/AVRO-1891 On Sun, Sep 20, 2020 at 9:56 PM Lian Jiang <jiangok2...@gmail.com> wrote:Thanks Dawid for proposing ConfluentRegistryDeserializationSchema. I am trying ConfluentRegistryAvroDeserializationSchema (if this is what you mean) but got "java.lang.Long cannot be cast to java.time.Instant". This may be caused by https://issues.apache.org/jira/browse/FLINK-11030. <https://issues.apache.org/jira/browse/FLINK-11030> Is there any progress for this JIRA? Thanks. Regards! Stacktrace: java.lang.ClassCastException: java.lang.Long cannot be cast to java.time.Instant at com.mycompany.mypayload.MetadataRecord.put(MetadataRecord.java:136) at org.apache.avro.generic.GenericData.setField(GenericData.java:795) at org.apache.avro.specific.SpecificDatumReader.readField(SpecificDatumReader.java:139) at org.apache.avro.generic.GenericDatumReader.readRecord(GenericDatumReader.java:237) at org.apache.avro.specific.SpecificDatumReader.readRecord(SpecificDatumReader.java:123) at org.apache.avro.generic.GenericDatumReader.readWithoutConversion(GenericDatumReader.java:170) at org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:151) at org.apache.avro.generic.GenericDatumReader.readWithoutConversion(GenericDatumReader.java:178) at org.apache.avro.specific.SpecificDatumReader.readField(SpecificDatumReader.java:136) at org.apache.avro.generic.GenericDatumReader.readRecord(GenericDatumReader.java:237) at org.apache.avro.specific.SpecificDatumReader.readRecord(SpecificDatumReader.java:123) at org.apache.avro.generic.GenericDatumReader.readWithoutConversion(GenericDatumReader.java:170) at org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:151) at org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:144) at org.apache.flink.formats.avro.RegistryAvroDeserializationSchema.deserialize(RegistryAvroDeserializationSchema.java:74) at com.mycompany.serde.SpecificRecordSerDe.deserialize(SpecificRecordSerDe.java:89) at com.mycompany.serde.SpecificRecordSerDe.deserialize(SpecificRecordSerDe.java:16) at org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema.deserialize(KafkaDeserializationSchema.java:80) at org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.partitionConsumerRecordsHandler(KafkaFetcher.java:181) at org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.runFetchLoop(KafkaFetcher.java:141) at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:755) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:100) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:63) at org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:201) Code: import org.apache.avro.specific.SpecificRecord; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.formats.avro.registry.confluent.ConfluentRegistryAvroDeserializationSchema; import org.apache.flink.formats.avro.registry.confluent.ConfluentRegistryAvroSerializationSchema; import org.apache.flink.streaming.connectors.kafka.KafkaContextAware; import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema; import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.producer.ProducerRecord; import javax.annotation.Nullable; import java.io.Serializable; public class SpecificRecordSerDe<T extends SpecificRecord> implements KafkaSerializationSchema<T>, KafkaContextAware<T>, KafkaDeserializationSchema<T>, Serializable { private final Class<T> tClass; private String topic; // for serializer private String subject; // for serializer private final String schemaRegistryUrl; private ConfluentRegistryAvroSerializationSchema<T> serializer; private ConfluentRegistryAvroDeserializationSchema<T> deserializer; private static final Object lock = new Object(); public static <T> SpecificRecordSerDe forDeserializer(final Class<T> tClass, String schemaRegistryUrl) { return new SpecificRecordSerDe(tClass, schemaRegistryUrl); } public static <T> SpecificRecordSerDe forSerializer(final Class<T> tClass, String schemaRegistryUrl, final String topic, final String subject) { return new SpecificRecordSerDe(tClass, schemaRegistryUrl, topic, subject); } private SpecificRecordSerDe(final Class<T> tClass, String schemaRegistryUrl) { this.tClass = tClass; this.schemaRegistryUrl = schemaRegistryUrl; } private SpecificRecordSerDe(final Class<T> tClass, final String schemaRegistryUrl, final String topic, final String subject) { this(tClass, schemaRegistryUrl); this.topic = topic; this.subject = subject; } @Override public ProducerRecord<byte[], byte[]> serialize(T element, @Nullable Long timestamp) { if (this.serializer == null) { synchronized (lock) { if (this.serializer == null) { this.serializer = ConfluentRegistryAvroSerializationSchema .forSpecific(tClass, this.subject, this.schemaRegistryUrl); } } } byte[] bytes = this.serializer.serialize(element); return new ProducerRecord<>(this.topic, bytes); } public boolean isEndOfStream(T nextElement) { return false; } @Override public T deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception { if (deserializer == null) { synchronized (lock) { if (deserializer == null) { deserializer = ConfluentRegistryAvroDeserializationSchema .forSpecific(tClass, this.schemaRegistryUrl); } } } return deserializer.deserialize(record.value()); } @Override public String getTargetTopic(T element) { return this.topic; } @Override public TypeInformation<T> getProducedType() { return TypeInformation.of(tClass); } } On Thu, Sep 17, 2020 at 9:42 AM Dawid Wysakowicz <dwysakow...@apache.org> wrote:Thanks for the update. First of all, why did you decide to build your own DeserializationSchema instead of using ConfluentRegistryDeserializationSchema? Your implementation is quite inefficient you do deserialize > serialize > deserialize. Serialization/deserialization is usually one of the heaviest operations in the pipeline. What do you return in your getProducedType? From the stack trace I guess you are instantiating the AvroTypeInfo? Could you maybe share a full runnable example? It would make it much easier to help you. Moreover the pattern with registering custom conversions in a SpecificData will not work with AvroSerializer. Custom serializers should be defined in the generated SpecificRecord (in your case PayloadRecord) in the SpecificRecordBase#getConversion(). Best, Dawid On 17/09/2020 16:34, Lian Jiang wrote: Piotr/Dawid, Thanks for the reply. FLINK-18223 seems not to related to this issue and I double checked that I am using Flink 1.11.0 instead of 1.10.0. My mistake. StreamExecutionEnvironment#getConfig()#enableObjectReuse()) solved the issue. I am not using ConfluentRegistryDeserializationSchema. Instead, I am creating custom DeserializationSchema: /* the deser class */ public class SpecificRecordSerDe<T extends SpecificRecord> implements KafkaSerializationSchema<T>, KafkaContextAware<T>, KafkaDeserializationSchema<T>, Serializable { private final Class<T> tClass;private final String tSchemaStr;private volatile transient Schema tSchema;private String topic;private String schemaRegistryUrl;private KafkaAvroSerializer serializer;private KafkaAvroDecoder decoder; public SpecificRecordSerDe(final Class<T> tClass, String tSchemaStr, String schemaRegistryUrl) { this.tClass = tClass; this.tSchemaStr = tSchemaStr; this.topic = null; this.schemaRegistryUrl = schemaRegistryUrl; } @Overridepublic T deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception { CachedSchemaRegistryClient client = new CachedSchemaRegistryClient( schemaRegistryUrl, 4); decoder = new KafkaAvroDecoder(client); GenericRecord generic = (GenericRecord) decoder.fromBytes(record.value()); DatumWriter<GenericRecord> writer = new SpecificDatumWriter<>(generic.getSchema(), ManagedSpecificData.getForClass(tClass)); ByteArrayOutputStream out = new ByteArrayOutputStream(); Encoder encoder = EncoderFactory.get().binaryEncoder(out, null); writer.write(generic, encoder); encoder.flush(); byte[] avroData = out.toByteArray(); out.close(); tSchema = new org.apache.avro.Schema.Parser().parse(tSchemaStr); SpecificDatumReader<T> reader = new SpecificDatumReader<>( generic.getSchema(), tSchema, ManagedSpecificData.getForClass(tClass)); Decoder anotherDecoder = DecoderFactory.get().binaryDecoder(avroData, null); T res = reader.read(null, anotherDecoder); return res; } } /* the specificData class */public class ManagedSpecificData extends SpecificData { private static ManagedSpecificData getManagedSpecificData() { ManagedSpecificData res = new ManagedSpecificData(); registerAdvancedType(new TimestampMillisType(), res); registerAdvancedType(new LocalDateType(), res); return res; }} /* how we use above deser class */ SpecificRecordSerDe<PayloadRecord> deserializer = new SpecificRecordSerDe<>( PayloadRecord.class, PayloadRecord.getClassSchema().toString(), this.schemaRegistry); FlinkKafkaConsumer consumer = new FlinkKafkaConsumer( this.inputTopic, deserializer, this.sourceSettings); Thanks Lian On Thu, Sep 17, 2020 at 2:19 AM Dawid Wysakowicz <dwysakow...@apache.org> wrote:Hi, Could you share exactly how do you configure avro & kafka? Do you use Table API or DataStream API? Do you use the ConfluentRegistryDeserializationSchema that comes with Flink or did you built custom DeserializationSchema? Could you maybe share the code for instantiating the source with us? It could help us track down the problematic spot. Best, Dawid On 16/09/2020 08:09, Lian Jiang wrote:Hi, i am using avro 1.9.1 + Flink 1.10.1 + Confluent Kafka 5.5. In Intellij, I can see the FlinkKafkaConsumer already deserialized the upstream kafka message. However, I got below error when this message is serialized during pushToOperator. Per the stack trace, the reason is that AvroSerializer is created by AvroFactory.fromSpecific() which creates its private copy of specificData. This private specificData does not have logical type information. This blocks the deserialized messages from being passed to downstream operators. Any idea how to make this work? Appreciated very much! org.apache.avro.AvroRuntimeException: Unknown datum type java.time.Instant: 2020-09-15T07:00:00Z atorg.apache.avro.generic.GenericData.getSchemaName(GenericData.java:887)atorg.apache.avro.specific.SpecificData.getSchemaName(SpecificData.java:420)atorg.apache.avro.generic.GenericData.resolveUnion(GenericData.java:850)atorg.apache.avro.generic.GenericData.deepCopyRaw(GenericData.java:1280)at org.apache.avro.generic.GenericData.deepCopy(GenericData.java:1199) atorg.apache.avro.generic.GenericData.deepCopyRaw(GenericData.java:1261)at org.apache.avro.generic.GenericData.deepCopy(GenericData.java:1199) atorg.apache.avro.generic.GenericData.deepCopyRaw(GenericData.java:1280)at org.apache.avro.generic.GenericData.deepCopy(GenericData.java:1199) atorg.apache.avro.generic.GenericData.deepCopyRaw(GenericData.java:1261)at org.apache.avro.generic.GenericData.deepCopy(GenericData.java:1199) atorg.apache.flink.formats.avro.typeutils.AvroSerializer.copy(AvroSerializer.java:242)atorg.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator(OperatorChain.java:715)atorg.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:692)atorg.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:672)atorg.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:52)atorg.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:30)atorg.apache.flink.streaming.api.operators.StreamSourceContexts$NonTimestampContext.collect(StreamSourceContexts.java:104)atorg.apache.flink.streaming.api.operators.StreamSourceContexts$NonTimestampContext.collectWithTimestamp(StreamSourceContexts.java:111)atorg.apache.flink.streaming.connectors.kafka.internals.AbstractFetcher.emitRecordsWithTimestamps(AbstractFetcher.java:352)atorg.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.partitionConsumerRecordsHandler(KafkaFetcher.java:185)atorg.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.runFetchLoop(KafkaFetcher.java:141)atorg.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:755)atorg.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:100)-- Create your own email signature <https://www.wisestamp.com/signature-in-email/?utm_source=promotion&utm_medium=signature&utm_campaign=create_your_own&srcid=5234462839406592>-- Create your own email signature <https://www.wisestamp.com/signature-in-email/?utm_source=promotion&utm_medium=signature&utm_campaign=create_your_own&srcid=5234462839406592>