Hi Rainie, I believe we need the full JobManager log to understand what's going on with your job. The logs you've provided so far only tell us that a TaskManager has died (which is expected, when a node goes down). What is interesting to see is what's happening next: are we having enough resources to restart the job? is there some issue restarting it?
If you feel uncomfortable sharing the full logs on a public mailing list, feel free to send the logs just to Yang Wang and/or me. Best, Robert On Thu, Jul 23, 2020 at 9:18 AM Rainie Li <raini...@pinterest.com> wrote: > Thank you Yang, I checked "yarn.application-attempts" is already set to 10. > Here is the exception part from job manager log. Full log file is too big, > I also reflected it to remove some company specific info. > Any suggestion to this exception would be appreciated! > > 2020-07-15 20:04:52,265 INFO > org.apache.flink.runtime.checkpoint.CheckpointCoordinator - Triggering > checkpoint 490 @ 1223 > for job 3a5aca9433cad1b6caa1b11227b9aa4a. > 2020-07-15 20:04:55,987 INFO > org.apache.flink.runtime.checkpoint.CheckpointCoordinator - Completed > checkpoint 490 for job 39393993 (3886147 bytes in 3736 ms). > 2020-07-15 20:09:41,317 INFO > org.apache.flink.runtime.executiongraph.ExecutionGraph - (137/240) > (39393993) switched from RUNNING to FAILED on container_e01_id @ cluster > name (dataPort=43743). > java.util.concurrent.TimeoutException: Heartbeat of TaskManager with id > container_e01_id timed out. > at > org.apache.flink.runtime.jobmaster.JobMaster$TaskManagerHeartbeatListener.notifyHeartbeatTimeout(JobMaster.java:1149) > at > org.apache.flink.runtime.heartbeat.HeartbeatMonitorImpl.run(HeartbeatMonitorImpl.java:109) > at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRunAsync(AkkaRpcActor.java:397) > at > org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:190) > at > org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:74) > at > org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:152) > at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26) > at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21) > at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:123) > at akka.japi.pf.UnitCaseStatement.applyOrElse(CaseStatements.scala:21) > at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:170) > at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) > at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) > at akka.actor.Actor$class.aroundReceive(Actor.scala:517) > at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) > at akka.actor.ActorCell.invoke(ActorCell.scala:561) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) > at akka.dispatch.Mailbox.run(Mailbox.scala:225) > at akka.dispatch.Mailbox.exec(Mailbox.scala:235) > at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > 2020-07-15 20:09:41,324 INFO > org.apache.flink.runtime.executiongraph.ExecutionGraph - Job name > (job id) switched from state RUNNING to FAILING. > java.util.concurrent.TimeoutException: Heartbeat of TaskManager with id > container_e01_id timed out. > at > org.apache.flink.runtime.jobmaster.JobMaster$TaskManagerHeartbeatListener.notifyHeartbeatTimeout(JobMaster.java:1149) > at > org.apache.flink.runtime.heartbeat.HeartbeatMonitorImpl.run(HeartbeatMonitorImpl.java:109) > at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRunAsync(AkkaRpcActor.java:397) > at > org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:190) > at > org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:74) > at > org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:152) > at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26) > at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21) > at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:123) > at akka.japi.pf.UnitCaseStatement.applyOrElse(CaseStatements.scala:21) > at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:170) > at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) > at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171) > at akka.actor.Actor$class.aroundReceive(Actor.scala:517) > at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) > at akka.actor.ActorCell.invoke(ActorCell.scala:561) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) > at akka.dispatch.Mailbox.run(Mailbox.scala:225) > at akka.dispatch.Mailbox.exec(Mailbox.scala:235) > at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > 2020-07-15 20:09:41,330 INFO > org.apache.flink.runtime.executiongraph.ExecutionGraph - Source: > Custom Source (1/60) switched from RUNNING to CANCELING. > > Best regards > Rainie > > On Wed, Jul 22, 2020 at 7:19 PM Yang Wang <danrtsey...@gmail.com> wrote: > >> Could you check for that whether the JobManager is also running on the >> lost Yarn NodeManager? >> If it is the case, you need to configure "yarn.application-attempts" to a >> value bigger than 1. >> >> >> BTW, the logs you provided are not Yarn NodeManager logs. And if you >> could provide the full jobmanager >> log, it will help a lot. >> >> >> >> Best, >> Yang >> >> Rainie Li <raini...@pinterest.com> 于2020年7月22日周三 下午3:54写道: >> >>> Hi Flink help, >>> >>> I am new to Flink. >>> I am investigating one flink app that cannot restart when we lose yarn >>> node manager (tc.yarn.rm.cluster.NumActiveNMs=0), while other flink >>> apps can restart automatically. >>> >>> *Here is job's restartPolicy setting:* >>> >>> *env.setRestartStrategy(RestartStrategies.fixedDelayRestart(1000, >>> org.apache.flink.api.common.time.Time.seconds(30)));* >>> >>> *Here is Job Manager log:* >>> >>> 2020-07-15 20:26:27,831 INFO >>> org.apache.flink.runtime.executiongraph.ExecutionGraph - Job >>> switched from state RUNNING to FAILING. >>> >>> org.apache.flink.runtime.io.network.netty.exception.RemoteTransportException: >>> Connection unexpectedly closed by remote task manager. This might indicate >>> that the remote task manager was lost. >>> >>> at >>> org.apache.flink.runtime.io.network.netty.CreditBasedPartitionRequestClientHandler.channelInactive(CreditBasedPartitionRequestClientHandler.java:136) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:245) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:231) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:224) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.handler.codec.ByteToMessageDecoder.channelInputClosed(ByteToMessageDecoder.java:390) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.handler.codec.ByteToMessageDecoder.channelInactive(ByteToMessageDecoder.java:355) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:245) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:231) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:224) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.DefaultChannelPipeline$HeadContext.channelInactive(DefaultChannelPipeline.java:1429) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:245) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:231) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.DefaultChannelPipeline.fireChannelInactive(DefaultChannelPipeline.java:947) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannel$AbstractUnsafe$8.run(AbstractChannel.java:826) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:404) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:474) >>> >>> at >>> org.apache.flink.shaded.netty4.io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:909) >>> >>> at java.lang.Thread.run(Thread.java:748) >>> >>> >>> *Here is some yarn node manager log:* >>> >>> 2020-07-15 20:57:11.927858: I tensorflow/cc/saved_model/reader.cc:31] >>> Reading SavedModel from >>> >>> 2020-07-15 20:57:11.928419: I tensorflow/cc/saved_model/reader.cc:54] >>> Reading meta graph with tags >>> >>> 2020-07-15 20:57:11.928923: I >>> tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports >>> instructions that this TensorFlow binary was not compiled to use: SSE4.1 >>> SSE4.2 AVX AVX2 FMA >>> >>> 2020-07-15 20:57:11.935924: I tensorflow/cc/saved_model/loader.cc:162] >>> Restoring SavedModel bundle. >>> >>> 2020-07-15 20:57:11.939271: I tensorflow/cc/saved_model/loader.cc:138] >>> Running MainOp with key saved_model_main_op on SavedModel bundle. >>> >>> 2020-07-15 20:57:11.944583: I tensorflow/cc/saved_model/loader.cc:259] >>> SavedModel load for tags; Status: success. Took 16732 microseconds. >>> >>> 2020-07-15 20:58:13.356004: F >>> tensorflow/core/lib/monitoring/collection_registry.cc:77] Cannot register 2 >>> metrics with the same name: /tensorflow/cc/saved_model/load_attempt_count >>> >>> >>> Any idea why this app's restartPolicy doesn't work? >>> Thanks >>> Best regards >>> Rainie >>> >>