Hi, Kim The reason your attempts (2) and (3) failed is that the json format does not support convert a BIGINT to TIMESTAMP, you can first define the BIGINT field and then use a computed column to extract TIMESTAMP field, you can also define the time attribute on TIMESTAMP filed for using time-based operations in Flink 1.10.1. But the computed column only support in pure DDL, the Table API lacks the support and should be aligned in 1.12 as I know. The DDL syntax as following:
create table test ( `type` STRING, `location` ROW<`id` STRING, lastUpdateTime BIGINT>, timestampCol as TO_TIMESTAMP(FROM_UNIXTIME(`location`.lastUpdateTime/1000, 'yyyy-MM-dd HH:mm:ss')), —computed column WATERMARK FOR timestampCol AS timestampCol - INTERVAL '5' SECOND ) with ( 'connector' = '...', 'format' = 'json', ... ); Best, Leonard Xu [1] https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/create.html <https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/sql/create.html> > 在 2020年7月4日,21:21,Dongwon Kim <eastcirc...@gmail.com> 写道: > > Hi, > I use Flink 1.10.1 and I want to use Table API to read JSON messages. The > message looks like below. > { > "type":"Update", > "location":{ > "id":"123e4567-e89b-12d3-a456-426652340000", > "lastUpdateTime":1593866161436 > } > } > > I wrote the following program just to see whether json messages are correctly > parsed by Table API: > StreamExecutionEnvironment env = > StreamExecutionEnvironment.getExecutionEnvironment(); > env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); > EnvironmentSettings envSettings = > EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); > StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, > envSettings); > tEnv > .connect( > new Kafka() > .version("universal") > .topic(consumerTopic) > .startFromLatest() > .properties(consumerProperties) > ) > .withFormat(new Json()) > .withSchema(new Schema().schema( > TableSchema.builder() > .field("type", STRING()) > .field("location", > ROW( > FIELD("id", STRING()), > // (1) > FIELD("lastUpdateTime", BIGINT()) > // (2) > FIELD("lastUpdateTime", TIMESTAMP()) > // (3) > FIELD("lastUpdateTime", > TIMESTAMP(3).bridgedTo(java.sql.Timestamp.class)) > )) > .build() > )) > .createTemporaryTable("message"); > tEnv.toAppendStream(tEnv.from("message"), Row.class) > .print(); > > Note that I tried BIGINT(), TIMESTAMP(), and > TIMESTAMP(3).bridgedTo(java.sql.Timestamp.class). > (1) it works fine but later I can't use time-based operations like windowing. > > (2) it causes the following exception > Exception in thread "main" org.apache.flink.table.api.ValidationException: > Type ROW<`id` STRING, `lastUpdateTime` TIMESTAMP(6)> of table field > 'location' does not match with the physical type ROW<`id` STRING, > `lastUpdateTime` TIMESTAMP(3)> of the 'location' field of the TableSource > return type. > at > org.apache.flink.table.utils.TypeMappingUtils.lambda$checkPhysicalLogicalTypeCompatible$4(TypeMappingUtils.java:166) > at > org.apache.flink.table.utils.TypeMappingUtils.checkPhysicalLogicalTypeCompatible(TypeMappingUtils.java:191) > at > org.apache.flink.table.utils.TypeMappingUtils.lambda$computeInCompositeType$8(TypeMappingUtils.java:252) > at java.util.stream.Collectors.lambda$toMap$58(Collectors.java:1321) > at java.util.stream.ReduceOps$3ReducingSink.accept(ReduceOps.java:169) > at > java.util.ArrayList$ArrayListSpliterator.forEachRemaining(ArrayList.java:1382) > at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:481) > at > java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:471) > at java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708) > at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234) > at java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:499) > at > org.apache.flink.table.utils.TypeMappingUtils.computeInCompositeType(TypeMappingUtils.java:234) > at > org.apache.flink.table.utils.TypeMappingUtils.computePhysicalIndices(TypeMappingUtils.java:212) > at > org.apache.flink.table.utils.TypeMappingUtils.computePhysicalIndicesOrTimeAttributeMarkers(TypeMappingUtils.java:116) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.computeIndexMapping(StreamExecTableSourceScan.scala:212) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.translateToPlanInternal(StreamExecTableSourceScan.scala:107) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.translateToPlanInternal(StreamExecTableSourceScan.scala:62) > at > org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.translateToPlan(StreamExecTableSourceScan.scala:62) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToTransformation(StreamExecSink.scala:184) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:153) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:48) > at > org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58) > at > org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlan(StreamExecSink.scala:48) > at > org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:60) > at > org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:59) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at scala.collection.Iterator$class.foreach(Iterator.scala:891) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1334) > at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > at scala.collection.AbstractIterable.foreach(Iterable.scala:54) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.flink.table.planner.delegation.StreamPlanner.translateToPlan(StreamPlanner.scala:59) > at > org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:153) > at > org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.java:351) > at > org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.java:259) > at > org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.java:250) > at com.kakaomobility.mobdata.Finder.main(Finder.java:133) > Caused by: org.apache.flink.table.api.ValidationException: Type ROW<`id` > STRING, `lastUpdateTime` TIMESTAMP(6)> of table field 'location' does not > match with the physical type ROW<`id` STRING, `lastUpdateTime` TIMESTAMP(3)> > of the 'location' field of the TableSource return type. > at > org.apache.flink.table.utils.TypeMappingUtils.lambda$checkPhysicalLogicalTypeCompatible$4(TypeMappingUtils.java:166) > at > org.apache.flink.table.utils.TypeMappingUtils.checkPhysicalLogicalTypeCompatible(TypeMappingUtils.java:188) > ... 38 more > > (3) it causes the following exception > Caused by: java.time.format.DateTimeParseException: Text '1593868714814' > could not be parsed at index 0 > at > java.time.format.DateTimeFormatter.parseResolved0(DateTimeFormatter.java:1949) > at java.time.format.DateTimeFormatter.parse(DateTimeFormatter.java:1777) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.convertToLocalDateTime(JsonRowDeserializationSchema.java:366) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$wrapIntoNullableConverter$d586c97$1(JsonRowDeserializationSchema.java:236) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.convertField(JsonRowDeserializationSchema.java:439) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$assembleRowConverter$77f7700$1(JsonRowDeserializationSchema.java:418) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$wrapIntoNullableConverter$d586c97$1(JsonRowDeserializationSchema.java:236) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.convertField(JsonRowDeserializationSchema.java:439) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$assembleRowConverter$77f7700$1(JsonRowDeserializationSchema.java:418) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$wrapIntoNullableConverter$d586c97$1(JsonRowDeserializationSchema.java:236) > at > org.apache.flink.formats.json.JsonRowDeserializationSchema.deserialize(JsonRowDeserializationSchema.java:131) > ... 7 more > > Can I read such json messages with time information in Flink 1.10.1? > > Thanks > > Dongwon