Hi YI, Flink doesn't have a TypeInformation for `java.util.Date`, but only SqlTimeTypeInfo.DATE for `java.sql.Date`. That's why the TypeInformation.of(java.util.Date) is being recognized as a RAW type.
To resolve your problem, I think in `TypeInformation.of(..)` you should use a concrete type for `java.util.Date`, e.g. `java.sql.Timestamp`, `java.sql.Date`, `java.sql.Time`. Best, Jark On Thu, 18 Jun 2020 at 10:32, YI <uuu...@protonmail.com> wrote: > Hi all, > > I am using flink to process external data. The source format is json, and > the underlying data types are defined in a external library. > I generated table schema with `TableSchema.fromTypeInfo` and > `TypeInformation.of[_]`. From what I read, this method is deprecated. > But I didn't find any alternatives. Manually tweaking table schema is not > viable as there are simply too many types. > > One of the field in the source type is `java.util.Date`. I tried to > convert the obtained table to a datastream with Table.toAppendStream. > When I ran > `tEnv.from("rawEvent").select('_isComplete).toAppendStream[(Boolean)].print()`, > the following exception occurred. > > Exception in thread "main" org.apache.flink.table.api.TableException: Type > is not supported: Date > at > org.apache.flink.table.calcite.FlinkTypeFactory$.org$apache$flink$table$calcite$FlinkTypeFactory$$typeInfoToSqlTypeName(FlinkTypeFactory.scala:350) > at > org.apache.flink.table.calcite.FlinkTypeFactory.createTypeFromTypeInfo(FlinkTypeFactory.scala:63) > at > org.apache.flink.table.calcite.FlinkTypeFactory.$anonfun$buildLogicalRowType$1(FlinkTypeFactory.scala:201) > at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) > at > scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) > at > org.apache.flink.table.calcite.FlinkTypeFactory.buildLogicalRowType(FlinkTypeFactory.scala:198) > at > org.apache.flink.table.plan.schema.TableSourceTable.getRowType(TableSourceTable.scala:96) > at > org.apache.calcite.prepare.CalciteCatalogReader.getTable(CalciteCatalogReader.java:131) > at > org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:228) > at > org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:84) > at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1068) > at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1094) > at > org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:268) > at > org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:134) > at > org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69) > at > org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:131) > at > org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111) > at > org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:91) > at > org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69) > at > org.apache.flink.table.plan.QueryOperationConverter.lambda$defaultMethod$0(QueryOperationConverter.java:130) > at java.util.Collections$SingletonList.forEach(Collections.java:4824) > at > org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:130) > at > org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111) > at > org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:46) > at > org.apache.flink.table.operations.ProjectQueryOperation.accept(ProjectQueryOperation.java:75) > at > org.apache.flink.table.calcite.FlinkRelBuilder.tableOperation(FlinkRelBuilder.scala:106) > at > org.apache.flink.table.planner.StreamPlanner.translateToType(StreamPlanner.scala:390) > at > org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:185) > at > org.apache.flink.table.planner.StreamPlanner.$anonfun$translate$1(StreamPlanner.scala:117) > at > scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:273) > at scala.collection.Iterator.foreach(Iterator.scala:943) > at scala.collection.Iterator.foreach$(Iterator.scala:943) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1431) > at scala.collection.IterableLike.foreach(IterableLike.scala:74) > at scala.collection.IterableLike.foreach$(IterableLike.scala:73) > at scala.collection.AbstractIterable.foreach(Iterable.scala:56) > at scala.collection.TraversableLike.map(TraversableLike.scala:273) > at scala.collection.TraversableLike.map$(TraversableLike.scala:266) > at scala.collection.AbstractTraversable.map(Traversable.scala:108) > at > org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:117) > at > org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.scala:210) > at > org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.scala:107) > at > org.apache.flink.table.api.scala.TableConversions.toAppendStream(TableConversions.scala:101) > at io.redacted.test.package$.testJoin(package.scala:31) > at io.redacted.test.package$.process(package.scala:26) > at io.redacted.DataAggregator$.main(DataAggregator.scala:15) > at io.redacted.DataAggregator.main(DataAggregator.scala) > > > This exception is thrown even though I didn't select RAW data field > `_startTime` which is of type `java.util.Date`. I believe this exception is > undesirable. > Is there any way to obtain a RAW data from flink tables? If there isn't > any, how do I circumvent my current issue? Do I need to manually update all > table schema? > > There is a relevant issue in > http://mail-archives.apache.org/mod_mbox/flink-user/201907.mbox/%3CCA+3UsY2-L1OKTjNBwX2ajG3o6v5M6QS=jbwyybemzlvdm5x...@mail.gmail.com%3E > , > Unfortunately, I didn't find a satisfatory solutions. > > Cheers, > Yi > >