连接的版本部分我本地已经修改为 5了,发生了下面的报错;
>>     st_env.connect(
>>         Elasticsearch()
>>             .version("5")
>>             .host("localhost", 9200, "http")
>>             .index("taxiid-cnts")
>>             .document_type('taxiidcnt')
>>             .key_delimiter("$")) \














在 2020-06-16 15:38:28,"Dian Fu" <dian0511...@gmail.com> 写道:
>I guess it's because the ES version specified in the job is `6`, however, the 
>jar used is `5`.
>
>> 在 2020年6月16日,下午1:47,jack <wslyk...@163.com> 写道:
>> 
>> 我这边使用的是pyflink连接es的一个例子,我这边使用的es为5.4.1的版本,pyflink为1.10.1,连接jar包我使用的是 
>> flink-sql-connector-elasticsearch5_2.11-1.10.1.jar,kafka,json的连接包也下载了,连接kafka测试成功了。
>> 连接es的时候报错,findAndCreateTableSink   failed。 
>> 是不是es的连接jar包原因造成的?哪位遇到过类似问题还请指导一下,感谢。
>> 
>> Caused by Could not find a suitable  factory for   
>> ‘org.apache.flink.table.factories.TableSinkFactory’ in the classpath.
>> Reason: Required context properties mismatch
>> 
>> 
>> 
>> from pyflink.datastream import StreamExecutionEnvironment, TimeCharacteristic
>> from pyflink.table import StreamTableEnvironment, DataTypes, 
>> EnvironmentSettings
>> from pyflink.table.descriptors import Schema, Kafka, Json, Rowtime, 
>> Elasticsearch
>> 
>> 
>> def area_cnts():
>>     s_env = StreamExecutionEnvironment.get_execution_environment()
>>     s_env.set_stream_time_characteristic(TimeCharacteristic.EventTime)
>>     s_env.set_parallelism(1)
>> 
>>     # use blink table planner
>>     st_env = StreamTableEnvironment \
>>         .create(s_env, environment_settings=EnvironmentSettings
>>                 .new_instance()
>>                 .in_streaming_mode()
>>                 .use_blink_planner().build())
>> 
>>     # register source and sink
>>     register_rides_source(st_env)
>>     register_cnt_sink(st_env)
>> 
>>     # query
>>     st_env.from_path("source")\
>>         .group_by("taxiId")\
>>         .select("taxiId, count(1) as cnt")\
>>         .insert_into("sink")
>> 
>>     # execute
>>     st_env.execute("6-write_with_elasticsearch")
>> 
>> 
>> def register_rides_source(st_env):
>>     st_env \
>>         .connect(  # declare the external system to connect to
>>         Kafka()
>>             .version("universal")
>>             .topic("Rides")
>>             .start_from_earliest()
>>             .property("zookeeper.connect", "zookeeper:2181")
>>             .property("bootstrap.servers", "kafka:9092")) \
>>         .with_format(  # declare a format for this system
>>         Json()
>>             .fail_on_missing_field(True)
>>             .schema(DataTypes.ROW([
>>             DataTypes.FIELD("rideId", DataTypes.BIGINT()),
>>             DataTypes.FIELD("isStart", DataTypes.BOOLEAN()),
>>             DataTypes.FIELD("eventTime", DataTypes.TIMESTAMP()),
>>             DataTypes.FIELD("lon", DataTypes.FLOAT()),
>>             DataTypes.FIELD("lat", DataTypes.FLOAT()),
>>             DataTypes.FIELD("psgCnt", DataTypes.INT()),
>>             DataTypes.FIELD("taxiId", DataTypes.BIGINT())]))) \
>>         .with_schema(  # declare the schema of the table
>>         Schema()
>>             .field("rideId", DataTypes.BIGINT())
>>             .field("taxiId", DataTypes.BIGINT())
>>             .field("isStart", DataTypes.BOOLEAN())
>>             .field("lon", DataTypes.FLOAT())
>>             .field("lat", DataTypes.FLOAT())
>>             .field("psgCnt", DataTypes.INT())
>>             .field("rideTime", DataTypes.TIMESTAMP())
>>             .rowtime(
>>             Rowtime()
>>                 .timestamps_from_field("eventTime")
>>                 .watermarks_periodic_bounded(60000))) \
>>         .in_append_mode() \
>>         .register_table_source("source")
>> 
>> 
>> def register_cnt_sink(st_env):
>>     st_env.connect(
>>         Elasticsearch()
>>             .version("6")
>>             .host("elasticsearch", 9200, "http")
>>             .index("taxiid-cnts")
>>             .document_type('taxiidcnt')
>>             .key_delimiter("$")) \
>>         .with_schema(
>>             Schema()
>>                 .field("taxiId", DataTypes.BIGINT())
>>                 .field("cnt", DataTypes.BIGINT())) \
>>         .with_format(
>>            Json()
>>                .derive_schema()) \
>>         .in_upsert_mode() \
>>         .register_table_sink("sink")
>> 
>> 
>> if __name__ == '__main__':
>>     area_cnts()
>> 
>

Reply via email to