Thank you. I create an issue: 
https://issues.apache.org/jira/browse/FLINK-17446 
<https://issues.apache.org/jira/browse/FLINK-17446>

> 2020年4月28日 下午7:57,Jark Wu-3 [via Apache Flink User Mailing List archive.] 
> <ml+s2336050n34768...@n4.nabble.com> 写道:
> 
> Thanks for reporting this. I think this is a missing feature. We need to do 
> something in the optimizer to make this possible. 
> Could you please help to create a JIRA issue for this?
> 
> Best,
> Jark
> 
> On Tue, 28 Apr 2020 at 14:55, 刘建刚 <[hidden email] 
> <x-msg://14/user/SendEmail.jtp?type=node&node=34768&i=0>> wrote:
>       Hi, I find that blink planner supports CUBE. CUBE can be used together 
> with a field but not window. For example, the following SQL is not supported:
> SELECT A, B, sum(C)
>     FROM person
> GROUP BY cube(A, B), TUMBLE(curTimestamp, interval '1' minute)
>       The following error is reported. Is there a way to combine cube and 
> window? Thank you very much.
> 
> Exception in thread "main" 
> org.apache.flink.table.planner.codegen.CodeGenException: Unsupported call: 
> TUMBLE(TIMESTAMP(3) *ROWTIME*, INTERVAL SECOND(3) NOT NULL) 
> If you think this function should be supported, you can create an issue and 
> start a discussion for it.
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator$$anonfun$generateCallExpression$5$$anonfun$apply$2.apply(ExprCodeGenerator.scala:792)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator$$anonfun$generateCallExpression$5$$anonfun$apply$2.apply(ExprCodeGenerator.scala:792)
>       at scala.Option.getOrElse(Option.scala:121)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator$$anonfun$generateCallExpression$5.apply(ExprCodeGenerator.scala:791)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator$$anonfun$generateCallExpression$5.apply(ExprCodeGenerator.scala:796)
>       at scala.Option.getOrElse(Option.scala:121)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator.generateCallExpression(ExprCodeGenerator.scala:785)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator.visitCall(ExprCodeGenerator.scala:485)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator.visitCall(ExprCodeGenerator.scala:51)
>       at org.apache.calcite.rex.RexCall.accept(RexCall.java:191)
>       at 
> org.apache.flink.table.planner.codegen.ExprCodeGenerator.generateExpression(ExprCodeGenerator.scala:131)
>       at 
> org.apache.flink.table.planner.codegen.CalcCodeGenerator$$anonfun$5.apply(CalcCodeGenerator.scala:152)
>       at 
> org.apache.flink.table.planner.codegen.CalcCodeGenerator$$anonfun$5.apply(CalcCodeGenerator.scala:152)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.flink.table.planner.codegen.CalcCodeGenerator$.produceProjectionCode$1(CalcCodeGenerator.scala:152)
>       at 
> org.apache.flink.table.planner.codegen.CalcCodeGenerator$.generateProcessCode(CalcCodeGenerator.scala:179)
>       at 
> org.apache.flink.table.planner.codegen.CalcCodeGenerator$.generateCalcOperator(CalcCodeGenerator.scala:49)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecCalc.translateToPlanInternal(StreamExecCalc.scala:77)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecCalc.translateToPlanInternal(StreamExecCalc.scala:39)
>       at 
> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecCalcBase.translateToPlan(StreamExecCalcBase.scala:38)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecExpand.translateToPlanInternal(StreamExecExpand.scala:82)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecExpand.translateToPlanInternal(StreamExecExpand.scala:42)
>       at 
> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecExpand.translateToPlan(StreamExecExpand.scala:42)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecExchange.translateToPlanInternal(StreamExecExchange.scala:84)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecExchange.translateToPlanInternal(StreamExecExchange.scala:44)
>       at 
> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecExchange.translateToPlan(StreamExecExchange.scala:44)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecGroupAggregate.translateToPlanInternal(StreamExecGroupAggregate.scala:139)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecGroupAggregate.translateToPlanInternal(StreamExecGroupAggregate.scala:55)
>       at 
> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecGroupAggregate.translateToPlan(StreamExecGroupAggregate.scala:55)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecCalc.translateToPlanInternal(StreamExecCalc.scala:54)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecCalc.translateToPlanInternal(StreamExecCalc.scala:39)
>       at 
> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecCalcBase.translateToPlan(StreamExecCalcBase.scala:38)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToTransformation(StreamExecSink.scala:184)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:153)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:48)
>       at 
> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>       at 
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlan(StreamExecSink.scala:48)
>       at 
> org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:60)
>       at 
> org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:59)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:891)
>       at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
>       at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>       at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.flink.table.planner.delegation.StreamPlanner.translateToPlan(StreamPlanner.scala:59)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:153)
>       at 
> org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.java:351)
>       at 
> org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toRetractStream(StreamTableEnvironmentImpl.java:296)
>       at 
> org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toRetractStream(StreamTableEnvironmentImpl.java:287)
> 
> 
> 
> If you reply to this email, your message will be added to the discussion 
> below:
> http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Blink-window-and-cube-tp34761p34768.html
>  
> <http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Blink-window-and-cube-tp34761p34768.html>
> To start a new topic under Apache Flink User Mailing List archive., email 
> ml+s2336050n1...@n4.nabble.com <mailto:ml+s2336050n1...@n4.nabble.com> 
> To unsubscribe from Apache Flink User Mailing List archive., click here 
> <http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/template/NamlServlet.jtp?macro=unsubscribe_by_code&node=1&code=bGl1amlhbmdhbmdwZW5nQGdtYWlsLmNvbXwxfC0xMTYwNzM3MjI=>.
> NAML 
> <http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml>

Reply via email to