@Benchao @Jark thank you very much. We have use flink 1.9 for a while , and we will try 1.9 + minibatch.
dixingxin...@163.com Sender: Jark Wu Send Time: 2020-04-18 21:38 Receiver: Benchao Li cc: dixingxing85; user; user-zh Subject: Re: Flink streaming sql是否支持两层group by聚合 Hi, I will use English because we are also sending to user@ ML. This behavior is as expected, not a bug. Benchao gave a good explanation about the reason. I will give some further explanation. In Flink SQL, we will split an update operation (such as uv from 100 -> 101) into two separate messages, one is -[key, 100], the other is +[key, 101]. Once these two messages arrive the downstream aggregation, it will also send two result messages (assuming the previous SUM(uv) is 500), one is [key, 400], the other is [key, 501]. But this problem is almost addressed since 1.9, if you enabled the mini-batch optimization [1]. Because mini-batch optimization will try best to the accumulate the separate + and - message in a single mini-batch processing. You can upgrade and have a try. Best, Jark [1]: https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/tuning/streaming_aggregation_optimization.html#minibatch-aggregation On Sat, 18 Apr 2020 at 12:26, Benchao Li <libenc...@gmail.com> wrote: 这个按照目前的设计,应该不能算是bug,应该是by desigh的。 主要问题还是因为有两层agg,第一层的agg的retract会导致第二层的agg重新计算和下发结果。 dixingxing85 <dixingxin...@163.com>于2020年4月18日 周六上午11:38写道: 多谢benchao, 我这个作业的结果预期结果是每天只有一个结果,这个结果应该是越来越大的,比如: 20200417,86 20200417,90 20200417,130 20200417,131 而不应该是忽大忽小的,数字由大变小,这样的结果需求方肯定不能接受的: 20200417,90 20200417,86 20200417,130 20200417,86 20200417,131 我的疑问是内层的group by产生的retract流,会影响sink吗,我是在sink端打的日志。 如果flink支持这种两层group by的话,那这种结果变小的情况应该算是bug吧? Sent from my iPhone On Apr 18, 2020, at 10:08, Benchao Li <libenc...@gmail.com> wrote: Hi, 这个是支持的哈。 你看到的现象是因为group by会产生retract结果,也就是会先发送-[old],再发送+[new]. 如果是两层的话,就成了: 第一层-[old], 第二层-[cur], +[old] 第一层+[new], 第二层[-old], +[new] dixingxin...@163.com <dixingxin...@163.com> 于2020年4月18日周六 上午2:11写道: Hi all: 我们有个streaming sql得到的结果不正确,现象是sink得到的数据一会大一会小,我们想确认下,这是否是个bug, 或者flink还不支持这种sql。 具体场景是:先group by A, B两个维度计算UV,然后再group by A 把维度B的UV sum起来,对应的SQL如下:(A -> dt, B -> pvareaid) SELECT dt, SUM(a.uv) AS uv FROM ( SELECT dt, pvareaid, COUNT(DISTINCT cuid) AS uv FROM streaming_log_event WHERE action IN ('action1') AND pvareaid NOT IN ('pv1', 'pv2') AND pvareaid IS NOT NULL GROUP BY dt, pvareaid ) a GROUP BY dt; sink接收到的数据对应日志为: 2020-04-17 22:28:38,727 INFO groupBy xx -> to: Tuple2 -> Sink: Unnamed (1/1) (GeneralRedisSinkFunction.invoke:169) - receive data(false,0,86,20200417) 2020-04-17 22:28:38,727 INFO groupBy xx -> to: Tuple2 -> Sink: Unnamed (1/1) (GeneralRedisSinkFunction.invoke:169) - receive data(true,0,130,20200417) 2020-04-17 22:28:39,327 INFO groupBy xx -> to: Tuple2 -> Sink: Unnamed (1/1) (GeneralRedisSinkFunction.invoke:169) - receive data(false,0,130,20200417) 2020-04-17 22:28:39,327 INFO groupBy xx -> to: Tuple2 -> Sink: Unnamed (1/1) (GeneralRedisSinkFunction.invoke:169) - receive data(true,0,86,20200417) 2020-04-17 22:28:39,327 INFO groupBy xx -> to: Tuple2 -> Sink: Unnamed (1/1) (GeneralRedisSinkFunction.invoke:169) - receive data(false,0,86,20200417) 2020-04-17 22:28:39,328 INFO groupBy xx -> to: Tuple2 -> Sink: Unnamed (1/1) (GeneralRedisSinkFunction.invoke:169) - receive data(true,0,131,20200417) 我们使用的是1.7.2, 测试作业的并行度为1。 这是对应的 issue: https://issues.apache.org/jira/browse/FLINK-17228 dixingxin...@163.com -- Benchao Li School of Electronics Engineering and Computer Science, Peking University Tel:+86-15650713730 Email: libenc...@gmail.com; libenc...@pku.edu.cn -- Benchao Li School of Electronics Engineering and Computer Science, Peking University Tel:+86-15650713730 Email: libenc...@gmail.com; libenc...@pku.edu.cn