Hi, Thanks for the reference, Jark. In Pravega connector, user will define Schema first and then create the table with the descriptor using the schema, see [1] and error also came from this test case. We also tried the recommended `bridgedTo(Timestamp.class)` method in the schema construction, it came with the same error stack trace. We are also considering switching to Blink planner implementation, do you think we can get this issue fixed with the change?
Here is the full stacktrace: ``` org.apache.flink.table.codegen.CodeGenException: Unsupported cast from 'LocalDateTime' to 'Long'. at org.apache.flink.table.codegen.calls.ScalarOperators$.generateCast(ScalarOperators.scala:815) at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:941) at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:66) at org.apache.calcite.rex.RexCall.accept(RexCall.java:191) at org.apache.flink.table.codegen.CodeGenerator.$anonfun$visitCall$1(CodeGenerator.scala:752) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:233) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at scala.collection.TraversableLike.map(TraversableLike.scala:233) at scala.collection.TraversableLike.map$(TraversableLike.scala:226) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:742) at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:66) at org.apache.calcite.rex.RexCall.accept(RexCall.java:191) at org.apache.flink.table.codegen.CodeGenerator.generateExpression(CodeGenerator.scala:247) at org.apache.flink.table.codegen.CodeGenerator.$anonfun$generateConverterResultExpression$1(CodeGenerator.scala:273) at org.apache.flink.table.codegen.CodeGenerator.$anonfun$generateConverterResultExpression$1$adapted(CodeGenerator.scala:269) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:233) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:32) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:29) at scala.collection.mutable.ArrayOps$ofInt.foreach(ArrayOps.scala:242) at scala.collection.TraversableLike.map(TraversableLike.scala:233) at scala.collection.TraversableLike.map$(TraversableLike.scala:226) at scala.collection.mutable.ArrayOps$ofInt.map(ArrayOps.scala:242) at org.apache.flink.table.codegen.CodeGenerator.generateConverterResultExpression(CodeGenerator.scala:269) at org.apache.flink.table.plan.nodes.dataset.BatchScan.generateConversionMapper(BatchScan.scala:95) at org.apache.flink.table.plan.nodes.dataset.BatchScan.convertToInternalRow(BatchScan.scala:59) at org.apache.flink.table.plan.nodes.dataset.BatchScan.convertToInternalRow$(BatchScan.scala:35) at org.apache.flink.table.plan.nodes.dataset.BatchTableSourceScan.convertToInternalRow(BatchTableSourceScan.scala:45) at org.apache.flink.table.plan.nodes.dataset.BatchTableSourceScan.translateToPlan(BatchTableSourceScan.scala:165) at org.apache.flink.table.plan.nodes.dataset.DataSetWindowAggregate.translateToPlan(DataSetWindowAggregate.scala:114) at org.apache.flink.table.plan.nodes.dataset.DataSetCalc.translateToPlan(DataSetCalc.scala:92) at org.apache.flink.table.api.internal.BatchTableEnvImpl.translate(BatchTableEnvImpl.scala:306) at org.apache.flink.table.api.internal.BatchTableEnvImpl.translate(BatchTableEnvImpl.scala:281) at org.apache.flink.table.api.java.internal.BatchTableEnvironmentImpl.toDataSet(BatchTableEnvironmentImpl.scala:87) at io.pravega.connectors.flink.FlinkPravegaTableITCase.testTableSourceBatchDescriptor(FlinkPravegaTableITCase.java:349) at io.pravega.connectors.flink.FlinkPravegaTableITCase.testTableSourceUsingDescriptor(FlinkPravegaTableITCase.java:246) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17) at org.junit.internal.runners.statements.FailOnTimeout$CallableStatement.call(FailOnTimeout.java:298) at org.junit.internal.runners.statements.FailOnTimeout$CallableStatement.call(FailOnTimeout.java:292) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.lang.Thread.run(Thread.java:748) Process finished with exit code -1 ``` [1] https://github.com/pravega/flink-connectors/blob/master/src/test/java/io/pravega/connectors/flink/FlinkPravegaTableITCase.java#L310 Best Regards, Brian From: Jark Wu <imj...@gmail.com> Sent: Thursday, March 19, 2020 20:25 To: Till Rohrmann Cc: Zhou, Brian; Timo Walther; Jingsong Li; user Subject: Re: Need help on timestamp type conversion for Table API on Pravega Connector [EXTERNAL EMAIL] This maybe a similar issue to [1], we continue the discussion there. Best, Jark [1]: http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/SQL-Timetamp-types-incompatible-after-migration-to-1-10-td33784.html#a33791 On Tue, 17 Mar 2020 at 18:05, Till Rohrmann <trohrm...@apache.org<mailto:trohrm...@apache.org>> wrote: Thanks for reporting this issue Brian. I'm not a Table API expert but I know that there is some work on the type system ongoing. I've pulled Timo and Jingsong into the conversation who might be able to tell you what exactly changed and whether the timestamp issue might be caused by the changes. Cheers, Till On Mon, Mar 16, 2020 at 5:48 AM <b.z...@dell.com<mailto:b.z...@dell.com>> wrote: Hi community, Pravega connector is a connector that provides both Batch and Streaming Table API implementation. We uses descriptor API to build Table source. When we plan to upgrade to Flink 1.10, we found the unit tests are not passing with our existing Batch Table API. There is a type conversion error in the Timestamp with our descriptor Table API. The detail is in the issue here: https://github.com/pravega/flink-connectors/issues/341 Hope someone from Flink community can help us with some suggestions on this issue. Thanks. Best Regards, Brian