Hi,

Thanks for the pointer. Looks like the documentation says to use
tableEnv.registerTableSink however in my IDE it shows the method is
deprecated in Flink 1.10. so I am still not seeing a way to add a sink that
can print to stdout? what sink should I use to print to stdout and how do I
add it without converting into DataStream?

Thanks!

On Sat, Feb 29, 2020 at 7:26 AM Piotr Nowojski <pi...@ververica.com> wrote:

> Hi,
>
> You shouldn’t be using `KafkaTableSource` as it’s marked @Internal. It’s
> not part of any public API.
>
> You don’t have to convert DataStream into Table to read from Kafka in
> Table API. I guess you could, if you had used DataStream API’s
> FlinkKafkaConsumer as it’s documented here [1].
>
> But you should be able to use Kafka Table connector directly, as it is
> described in the docs [2][3].
>
> Piotrek
>
> [1]
> https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html
> [2]
> https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#overview
> [3]
> https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#kafka-connector
>
> On 29 Feb 2020, at 12:54, kant kodali <kanth...@gmail.com> wrote:
>
> Also why do I need to convert to DataStream to print the rows of a table?
> Why not have a print method in the Table itself?
>
> On Sat, Feb 29, 2020 at 3:40 AM kant kodali <kanth...@gmail.com> wrote:
>
>> Hi All,
>>
>> Do I need to use DataStream API or Table API to construct sources? I am
>> just trying to read from Kafka and print it to console. And yes I tried it
>> with datastreams and it works fine but I want to do it using Table related
>> APIs. I don't see any documentation or a sample on how to create Kafka
>> table source or any other source using Table Source API's so after some
>> digging I wrote the following code. My ultimate goal is to avoid Datastream
>> API as much as possible and just use Table API & SQL but somehow I feel the
>> Flink framework focuses on DataStream than the SQL interface. am I wrong?
>> From the user perspective wouldn't it make more sense to focus on SQL
>> interfaces for both streaming and batch?
>>
>>
>> import 
>> org.apache.flink.api.common.serialization.AbstractDeserializationSchema;
>> import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
>> import org.apache.flink.streaming.connectors.kafka.KafkaTableSource;
>> import org.apache.flink.table.api.DataTypes;
>> import org.apache.flink.table.api.EnvironmentSettings;
>> import org.apache.flink.table.api.Table;
>> import org.apache.flink.table.api.TableSchema;
>> import org.apache.flink.table.api.java.StreamTableEnvironment;
>> import org.apache.flink.table.sources.TableSource;
>> import org.apache.flink.types.Row;
>>
>> import java.io.IOException;
>> import java.util.Properties;
>>
>> public class Test {
>>
>>     public class MyDeserializationSchema extends 
>> AbstractDeserializationSchema<Row> {
>>         @Override
>>         public Row deserialize(byte[] message) throws IOException {
>>             return Row.of(new String(message));
>>         }
>>     }
>>
>>     public static void main(String... args) throws Exception {
>>         Test test = new Test();
>>         EnvironmentSettings settings = EnvironmentSettings.newInstance()
>>                 .useBlinkPlanner()
>>                 .inStreamingMode()
>>                 .build();
>>
>>         StreamExecutionEnvironment streamExecutionEnvironment = 
>> StreamExecutionEnvironment.getExecutionEnvironment();
>>         StreamTableEnvironment tableEnvironment = 
>> StreamTableEnvironment.create(streamExecutionEnvironment, settings);
>>
>>         TableSource tableSource = test.getKafkaTableSource();
>>         Table kafkaTable = tableEnvironment.fromTableSource(tableSource);
>>         tableEnvironment.createTemporaryView("kafka_source", kafkaTable);
>>
>>         Table resultTable = tableEnvironment.sqlQuery("select * from 
>> kafka_source");
>>         tableEnvironment.toAppendStream(resultTable, Row.class).print();
>>
>>         streamExecutionEnvironment.execute("Sample Job");
>>     }
>>
>>     public KafkaTableSource getKafkaTableSource() {
>>         TableSchema tableSchema = TableSchema.builder().field("f0", 
>> DataTypes.STRING()).build();
>>         Properties properties = new Properties();
>>         properties.setProperty("bootstrap.servers", "localhost:9092");
>>         properties.setProperty("group.id", "test");
>>         return new KafkaTableSource(tableSchema, "test-topic1", properties, 
>> new MyDeserializationSchema());
>>     }
>> }
>>
>>
>> I get the following error
>>
>> The program finished with the following exception:
>>
>> The implementation of the FlinkKafkaConsumerBase is not serializable. The
>> object probably contains or references non serializable fields.
>> org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:151)
>> org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:71)
>>
>> org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.clean(StreamExecutionEnvironment.java:1821)
>>
>> org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.addSource(StreamExecutionEnvironment.java:1584)
>>
>> org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.addSource(StreamExecutionEnvironment.java:1529)
>>
>> org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.addSource(StreamExecutionEnvironment.java:1511)
>>
>> org.apache.flink.streaming.connectors.kafka.KafkaTableSourceBase.getDataStream(KafkaTableSourceBase.java:165)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.PhysicalTableSourceScan.getSourceTransformation(PhysicalTableSourceScan.scala:82)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.translateToPlanInternal(StreamExecTableSourceScan.scala:105)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.translateToPlanInternal(StreamExecTableSourceScan.scala:62)
>>
>> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecTableSourceScan.translateToPlan(StreamExecTableSourceScan.scala:62)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToTransformation(StreamExecSink.scala:184)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:153)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(StreamExecSink.scala:48)
>>
>> org.apache.flink.table.planner.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)
>>
>> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamExecSink.translateToPlan(StreamExecSink.scala:48)
>>
>> org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:60)
>>
>> org.apache.flink.table.planner.delegation.StreamPlanner$$anonfun$translateToPlan$1.apply(StreamPlanner.scala:59)
>>
>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>
>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>> scala.collection.Iterator$class.foreach(Iterator.scala:891)
>> scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>> scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>> scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>
>> org.apache.flink.table.planner.delegation.StreamPlanner.translateToPlan(StreamPlanner.scala:59)
>>
>> org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:153)
>>
>> org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.java:351)
>>
>> org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.java:259)
>>
>> org.apache.flink.table.api.java.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.java:250)
>> Test.main(Test.java:40)
>>
>> The error seems to be on the line
>>
>> tableEnvironment.toAppendStream(resultTable, Row.class).print();
>>
>> and I am not sure why it is not able to serialize?
>>
>> Thanks!
>>
>
>

Reply via email to