Hi, community,
I'm using Apache Flink SQL to build some of my realtime streaming apps. With 
one scenario I'm trying to count(distinct deviceID) over about 100GB data set 
in realtime, and aggregate results with sink to ElasticSearch index. I met a 
severe performance issue when running my flink job. Wanner get some help from 
community.


Flink version : 1.8.2
Running on yarn with 4 yarn slots per task manager. My flink task parallelism 
is set to be 10, which is equal to my kafka source partitions. After running 
the job, I can observe high backpressure from the flink dashboard. Any 
suggestions and kind of help is highly appreciated. 


running sql is like the following:
    

INSERT INTO ES6_ZHANGLE_OUTPUT(aggId, pageId, ts, expoCnt, clkCnt)

select aggId, pageId, statkey as ts, sum(cnt) as expoCnt, count(cnt) as clkCnt  
from

(

    SELECT

     aggId,

     pageId,

     statkey,

     COUNT(DISTINCT deviceId) as cnt

     FROM

     (

         SELECT

         'ZL_005' as aggId,

         'ZL_UV_PER_MINUTE' as pageId,

         deviceId,

         ts2Date(recvTime) as statkey

         from

         kafka_zl_etrack_event_stream

     )

     GROUP BY aggId, pageId, statkey, MOD(hashCode(deviceId), 1024)

) as t1

group by aggId, pageId, statkey
















Best

Reply via email to